本研究针对从尼日利亚贝努埃州马古迪大都市乌鲁库姆市场获得的鲶鱼骨生产胶水进行了研究。鲶鱼是从马古迪的乌鲁库姆市场购买的,经过加工,用锤子将鱼骨打碎,然后使用标准方法分析鲶鱼骨胶水生产的质量指标。水分含量质量指标结果的最大偏差为 (1.115),pH 值最小为 (- 0.090),密度的最大偏差为 (0.431),粘度最小指标为 (-20.90),灰分含量质量指标偏差为 (0.560)。标准胶水质量指标值与生产胶水获得的值之间的比较。制备的胶水比标准胶水酸性更强,密度更大,粘度更低(流动性更差),含水量更多,灰分更多。不同含水量对鲶鱼骨制备胶水质量指标的影响结果显示,不同含水量对鲶鱼骨制备胶水质量指标水分含量的影响平均值(x)值为(20.08),pH值平均值(x)值为(5.92),密度平均值(x)值为(2.174),粘度平均值(x)值为(51.56),质量指标灰分平均值(x)值为(3.14)。总体而言,鲶鱼胶具有良好的粘合力,对用户有价值。
目的:溃疡可以削弱口腔粘膜的先天防御能力。该研究的目的是检查使用源自骨髓干细胞的分泌组的治疗优势来治愈白化病大鼠的创伤性溃疡。材料和方法:将三十个雄性白化病大鼠随机分配给三组:对照组,接受Oracure Gel治疗的组以及接受秘密治疗的组。在第三天,第七天和第十二天服用颊粘膜的组织。评估是通过临床评估,组织学检查,Masson的三色染色和血管内皮生长因子(VEGF)特定的免疫组织化学分析进行的。统计分析。结果:用分泌组治疗的小组的伤口收缩比例最大,愈合率最快。对分泌组治疗组的组织学检查表现出改善的重新上皮化和更好的愈合能力。此外,该组显示出胶原蛋白含量的增加,新血管的形成以及促进其成熟的能力。结论:秘密的疗法可能是鼓励粘膜修复的安全有效方法。它可能是一种新型的无细胞治疗策略。因此,它提供了再生医学作为常规细胞疗法的可能替代品。关键词:口腔溃疡,再生,骨髓干细胞,分泌组,白化大鼠。
摘要。背景/目标:最近的报道表明,在正畸力载荷期间,硬化蛋白被牙周韧带组织衍生(PDL)细胞分泌,并且分泌的硬化素会导致骨代谢。但是,详细的机制知之甚少。这项研究的目的是确定PDL细胞如何影响骨形成。材料和方法:大鼠牙周韧带组织对硬化蛋白进行免疫组织化学染色。分别检查了从大鼠牙周韧带组织,瓦尔瓦里亚和皮肤分离的培养的原代PDL细胞,成骨细胞和皮肤成纤维细胞(SFB)。成骨细胞长达21天。培养的成骨细胞。成骨细胞,用于骨gla蛋白(BGP),AXIN2和KI67表达。分析用于获得条件培养基的PDL细胞的SOST,Ectodin和Wnt1表达,并与SFBS中的表达进行比较。结果:通过免疫组织化学染色在牙周韧带组织中观察到硬化素的表达。与成骨细胞培养中的cont-CDM相比,PDL-CDM中矿化结节的形成被抑制。在PDL-CDM中,与CONT-CDM相比,成骨细胞中BGP和AXIN2的表达水平降低。在PDL细胞中,SOST和过骨质的表达水平远高于SFBS。但是,
1。摘要1.1对于成员,骨髓移植是一种用健康细胞代替骨髓的医疗。替代单元可以来自您自己的身体或供体。骨髓移植也称为干细胞移植,或更具体地说,是造血干细胞移植。Transplantation can be used to treat certain types of cancer, such as leukaemia, myeloma, and lymphoma, and other blood and immune system diseases that affect the bone marrow.1.2对于医疗专业人员,干细胞或骨髓移植以健康的血细胞代替受损的血细胞。它可用于治疗影响血细胞的疾病,例如白血病和淋巴瘤。2。Scope The scope of this adjudication rule is to highlight the medical criteria, patient eligibility criteria and coverage details for Bone marrow transplant procedures for plans administered by Daman, subject to policy terms and conditions.
摘要:需要临床需要开发快速的过程支架来修复骨缺损。当前的研究介绍了利用基于熔点的3D打印的骨组织工程硅酸钙/聚二苯二甲酸钙的发展。硅酸钙(CZS)纳米颗粒被添加到多碳酸酯(PCL)多孔支架中,以增强其生物学和机械性能,同时对所得的性质进行了广泛的研究。在样品的熔点中没有发现显着差异,而包含生物陶瓷的样品的结晶温度点从36.1升至40.2°C。根据我们的结果,将CZS含量从0 wt。%(PC40)增加到多孔支架(孔隙率约为55-62%),将抗压强度从2.8 mpa提高到10.9 MPa。此外,SBF溶液中的磷灰石形成能力通过增强CZS百分比而显着增加。根据MTT测试结果,与纯PCL相比,PC40中MG63细胞的生存能力明显改善(约29%)。这些发现表明,3D打印的PCL/CZS复合支架可以成功制造,并显示出作为骨组织工程应用的植入物材料的巨大潜力。
本综述文章探讨了生长因子与骨转移之间的复杂关联,生长因子在几种恶性肿瘤(即乳腺癌、前列腺癌、肺癌和肾癌)的发展中起着至关重要的作用。我们讨论的重点是生长因子的关键受体,包括表皮生长因子受体 (EGFR)、转化生长因子-β (TGF β )、血管内皮生长因子受体 (VEGFR) 和成纤维细胞生长因子受体 (FGFR)。这些受体对于细胞活动(包括生长、分化和存活)至关重要,在癌症扩散以及肿瘤与骨环境之间的相互作用中起着重要作用。我们讨论了骨转移的潜在机制,特别强调了生长因子受体与骨微环境之间的相互作用。EGFR信号传导特别增强了破骨细胞的发展过程和溶骨性病变的形成,尤其是在乳腺癌和肺癌中。TGF β受体通过释放TGF β在溶骨性和成骨性转移中发挥作用,TGF β吸引癌细胞并促进骨重塑。这是前列腺癌扩散到骨骼的关键因素。FGFR和VEGFR分别在骨形成和肿瘤血管生成过程中的功能突出了这些相互作用的复杂性和多样性。该综述强调了针对这些受体的靶向治疗可以中断肿瘤发展和骨退化周期。治疗方法包括关注 VEGF/VEGFR、EGF/EGFR、FGF/FGFR 和 TGF β /TGF β R 通路。这些包括各种化合物,例如小分子抑制剂和单克隆抗体,它们已显示出干扰肿瘤诱导的骨骼改变的潜力。本文讨论了临床试验和临床前模型,深入了解了各种治疗方法的有效性和局限性。最后,本研究简明而全面地总结了目前关于骨转移生长因子受体的知识和治疗策略。这突出了理解肿瘤扩散到骨骼的微环境中生长因子受体信号传导的重要性,以及使用靶向疗法来增强骨转移癌症患者治疗效果的可能性。骨转移治疗的进步取决于专门针对恶性肿瘤和骨骼之间复杂关系的治疗方法的开发。
摘要:骨骼是一种代谢动态结构,通常在个人的整个生命周期中进行重塑,但通常会导致年龄增长的问题。是骨骼脉管系统的骨骼发育和稳态的关键参与者,但在病理状态下也是骨骼脉管系统。这种动脉,静脉和毛细血管的复杂系统形成不同的结构,其中每个子集的内皮细胞具有重要功能。从血管生成和骨特异性血管形成的基本过程开始,再加上初始骨形成,在稳态,衰老和病理条件下如何维持或改变了这些结构的维持或改变。在说明当前有关骨血管的知识后,该综述将继续转化为外来体,这是科学研究的新型热点。外泌体将通过目前的隔离程序和最先进的表征从发现开始,从而在骨血管发育,稳态以及骨再生和修复中的作用,同时总结基础信号转导途径。关于它们在这些过程中的作用,尤其是间充质干细胞衍生的细胞外囊泡,这是感兴趣的,这导致了有关专利应用的讨论,并对正在进行的临床试验进行了更新。综上所述,这篇综述提供了骨血管和骨再生的概述,重点是外泌体如何影响这种复杂的系统,因为它们在不久的将来可能对治疗目的有用。
摘要:骨髓是许多与血液相关疾病的来源,例如血液癌和骨髓移植(BMT),也称为造血干细胞移植(HSCT),是一种挽救生命的手术程序。但是,这种治疗与死亡率高有关。因此,预测BMT后的生存对于有效而准确的治疗至关重要。BMT被认为是由于几个主要的死亡原因(例如感染,毒性和移植物抗宿主病(GVHD))引起的与治疗相关的死亡率。此外,几个危险因素会影响BMT和治疗后的长期生存的成功。因此,需要基于机器学习技术的预测系统,该技术可以预测患者是否在BMT之后生存,这绝对可以帮助医生在为患者进行手术之前做出正确的决定。在本文中,使用了加利福尼亚大学Irvine ML存储库(UCI ML存储库)的公开可用的BMT数据集,研究了不同的机器学习模型,以预测经过BMT治疗的儿童的生存状况。尤其是随机森林(RF),包装分类器,极端梯度提升(XGBOOST),自适应增强(Adaboost),决策树(DT),梯度提升(GB)和K-Nearest Neighbors(KNN)在给定的数据集上进行了培训。数据集在应用一系列预处理步骤并根据相关热图上删除多重共线性特征后,由45个变量组成。RF,Adaboost,GB和Baging技术的最佳准确度达到97.37%。然后,应用了功能工程和建模步骤来识别最重要的功能,然后使用机器学习模型来简化整体分类过程。重要的是要注意,DT和GB获得的最重要特征分别最适合训练包装分类器和KNN模型。除此之外,还将使用网格搜索交叉验证(GSCV)优化了两种方法,以提高生存预测的准确性。
1神经科学系,法医医学,生物伦理学,道义学和医学法,“维克多·巴贝斯”医学与药学大学,罗马尼亚蒂米索拉300041; emanuela.stan@umft.ro(E.S.); raluca.dumache@umft.ro(R.D.); veronica.luta@umft.ro(V.C.); stefania.ungureanu@umft.ro(s.u.); enache.alexandra@umft.ro(A.E。)2法律医学研究所,罗马尼亚蒂米索拉300610; Alexandra.mihailescu@umft.ro(A.M。); daescu.ecaterina@umft.ro(E.D。)3 Ethics and Human Identification Research Center, Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania 4 Department of Microscopic Morphology Genetics, Center of Genomic Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania 5 Department I of Anatomy and Embryology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara,罗马尼亚6博士学校医学 - 药房,“ Victor Babes”,医学与药学大学,300041 Timis,Oara,Oara,罗马尼亚7化学生物学地理学学院,西西斯多拉大学,蒂米索拉大学,300115,蒂姆斯,蒂姆斯,罗马尼亚州奥拉斯; gheorghita.menghiu@e-uvt.ro(G.M.); delia.hutanu@e-uvt.ro(D.H.) *通信:muresan.camelia@umft.ro(C.-O.M.); corina.duda@e-uvt.ro(C.D.-S.)