Netflix、Disney Plus 和 YouTube [ 18 ] 等服务,让老牌电视网络面临留住观众的压力。流媒体服务不仅在娱乐(即电影和连续剧)方面存在竞争,在教育形式(即纪录片、科学节目)方面也存在竞争。这种所谓的教育娱乐(Edutainment)内容旨在娱乐、吸引人并支持长期学习 [ 33 ],仍然是德国电视台播放的常见形式。然而,在线平台正在稳步增长并吸引越来越多的观众。例如,TED 平台提供有关技术、娱乐和设计的简短而有力的演讲视频,在成立仅六年后,2012 年每天的观看次数就达到了 150 万次 [ 3 ]。此外,YouTube 的教育和学习视频在 2019 年最受欢迎的视频类型中排名“前 15 名”[ 17 ],表明人们对此类格式的兴趣。意识到这一领域日益激烈的竞争,德国广播公司为 YouTube、Instagram、Snapchat 和 TikTok 等其他平台创建了教育娱乐内容(参见[ 8 , 23 ])。未来,他们旨在将这些格式与传统节目结合在一起,并着眼于:如何将新技术融入正在播出的电视节目中,使其更具吸引力和互动性?一种可能的方法是使用更具交互性的技术(例如增强现实 (AR) 应用程序)来扩展可用内容。AR 可以设计为现有程序的补充,并且已显示出其娱乐性(例如,在著名的手机游戏 Pokemon Go 1 中)和教育性。AR 之前已应用于课堂和更广泛的学校环境 [ 1 ],除其他外,它还显示出对学习者的积极性产生积极影响,并有潜力丰富学习体验 [ 2 , 25 ]。对于电视的使用情况,AR 可以扩展以前被动的媒体消费,提供与内容进行主动互动的机会 - 促进参与度,并希望从长远来看,增加对寓教于乐内容的保留。研究开始探索电视应用的 AR 交互概念(参见[ 26 , 30 ])。然而,之前的研究尚未探索教育电视中 AR 的挑战和机遇,也没有调查观众与内容的主动互动。
例如,我们可以将二维磁体的磁性印记到其他层上,而不改变它们的固有性质,从而创造出新型的自旋电子和磁子装置。[8–10] 这种设计概念可以用于将磁性与超导相结合的系统,以实现拓扑超导。[11,12] 由于它在构建用于拓扑量子计算的基于马约拉纳的量子比特模块中具有潜在作用,因此目前它正受到广泛关注。[12–14] 虽然很少有潜在的真实材料表现出拓扑超导性,[15–18] 但设计材料中所需的物理特性来自不同成分之间精心设计的相互作用。 对于拓扑超导,需要将 s 波超导与磁性和自旋轨道耦合相结合,以创造出人工拓扑超导体。 [12,19] 然而,组分之间的耦合对界面结构和电子特性高度敏感 [2,20],因此,具有原子级清晰和高度均匀界面的范德华材料是一个具有吸引力的平台,可用于实现和利用设计材料中出现的奇异电子相。最近有研究表明,层状材料在单层 (ML) 极限下仍能保持磁性。[4,5,21] 虽然第一份报告依赖机械剥离进行样品制备,但相关材料三溴化铬 (CrBr 3 ) 和 Fe 3 GeTe 2 也在超高真空 (UHV) 下使用分子束外延 (MBE) 生长,[22,23] 这对于实现干净的边缘和界面至关重要。由于这些材料的层状性质,它们本身缺乏表面键合位点,从而阻止了层之间的化学键合,并导致对界面的更好控制。最近,我们利用MBE成功制备了基于vdW异质结构的超导铁磁混合体系。[24,25] 更重要的是,通过结合自旋轨道耦合、二维铁磁CrBr 3 和超导铌二硒化物(NbSe 2 ),我们利用低温扫描隧道显微镜(STM)和扫描隧道光谱(STS)证明了一维马约拉纳边缘模式的存在。[25] 然而,对于未来的应用,还需要进一步系统的研究,以更好地理解在NbSe 2 基底上生长的单层CrBr 3 的电子和磁性。
术语Theranostics显然已成为流行语。在很大程度上,这是由于前列腺特异性内存抗原(PSMA) - 靶向放射线的成功所致。这些配体可以用正电子或g的同位素标记,用于成像,或用B-或A -A -SETINT型同位素进行治疗。诊断或治疗性靶向配体是相同或相似的。以PSMA为目标的成像和治疗已迅速成为前10 Y前列腺癌管理的新临床标准,并且正在研究其他疾病中的应用。会议通常在PSMA成像和非PSMA成像之间进行分开,并且已经批准了几种PSMA放射性体进行成像和治疗前列腺癌或正在晚期发育。在这些临床成功之后,已经成立了许多新的生物技术公司,旨在开发新的Theranotic剂。但是,什么使PSMA Theranostics如此成功?在本社论中,我们试图回答这个问题,并反映出在其他核医学其他领域重复PSMA Theranostics成功的必要条件。这样做,我们认为治疗学的意见不应局限于肿瘤学,而是在神经病学,心脏病学以及动态和感染性疾病中的核医学应用中同样或更成功。作为起点,我们将疗法分子定义为分子靶向成像和疗法的组合,其中成像可起到可行的信息,从而实现新的或更有效的疗法。Feinstein等。Feinstein等。这种定义比常用的疗法定义是放射性核素成像疗法的组合,该疗法使用了相同的(类似)靶向分子的(类似)的成像和疗法的组合,这些组合是使用相同的分子靶标的,即基于PSMA基于基于PSMA基于基于PSMA的Terranotostics(1)。neverthe,我们认为它仍然足够具体,可以使疗法学与其他常见的医学成像用途区分开。实际上,大多数用于肿瘤分期的肿瘤学成像不符合我们对疗法成像的定义。这些成像研究可以更好地分层,但不能改善预后,因为它们仅将患者从一个预后组转移到另一个预后组。Feinstein等人描述了这个阶段的迁移。在1985年(2),并为纪念幽默主义者 - 哲学家威尔·罗杰斯(Will Rogers)称为威尔·罗杰斯现象。威尔·罗杰斯(Will Rogers)于1879年出生于俄克拉荷马州,他曾经说过:“当Okies离开俄克拉荷马州并搬到加利福尼亚时,他们提高了两个州的平均情报水平。”威尔·罗杰斯(Will Rogers)指的是1930年代大萧条期间的OKIES出埃及。观察到
生物伦理学的范围不受时间框架的限制。回顾性地理解过去医疗实践的伦理层面(例如 Lerner 和 Caplan 2016)与解决当前正在发生的生命伦理问题同样重要。然而,还有另一个角度需要考虑,即面向未来的角度。近几十年来生物伦理话语中的迫在眉睫的问题类别(事前伦理)主要以环境问题和可持续医学 1 的概念为特征(Kuře 2008;Schick 2016)。虽然这些生物伦理问题尚未完全体现出来,但它们的重要性在于,引发这些问题的基础要素在当代社会中已经很明显。为了探索医学工程或仍在开发中的复杂技术(如脑机接口 (BMI))的伦理影响,生物伦理学家 (Brody 2003;Chambers 1999)、文学理论家 (Squier 2004;Wald 2008) 以及叙事医学学者 (Charon and Montello 2002) 都要求对此类新兴生物伦理问题进行文学描述。本文探讨了生物伦理学与推想小说的交集,重点关注玛格丽特·阿特伍德的推想小说《羚羊与秧鸡》(2003) 中描绘的基因工程技术的警示元素。本文旨在研究推想小说在解决小说中使用基因改造技术所带来的生物伦理问题方面的作用,并概述推想小说如何进一步促进对新兴技术的伦理、社会和文化影响的更广泛讨论。玛格丽特·阿特伍德的文学作品以思辨性叙事为特点,其中包含科学或社会变革的伦理含义。《使女的故事》(1985)及其续集《遗嘱》(2019a)描绘了一个反乌托邦的未来,生殖技术和父权制破坏了女性自主权。其他作品如《心在最后》(2015)表明阿特伍德倾向于将思辨性与社会批评相结合。《洪水之年》(2009)和《疯狂亚当》(2013a)扩展了《羚羊与秧鸡》中呈现的生物灾难;这三部小说都发生在同一个宇宙中,构成了疯狂亚当三部曲。《羚羊与秧鸡》创造性地探索了基因工程及其随之而来的社会影响,并描绘了围绕生物技术的道德问题、环境破坏和不负责任的科学活动的不利影响。由于它介绍了阿特伍德后期小说中探讨的生物伦理问题,因此关注这部作品可以让我们了解基因工程技术的发展方向。
5 月份,海事电池市场发展势头强劲,受益于经济学 101 中最基本的概念:供需。5 月 19 日,Corvus Energy 宣布将在华盛顿州贝灵汉港(位于西雅图以北)建立一个锂离子电池制造工厂。Corvus Energy 是船舶应用电池储能系统 (BESS) 的领先供应商。其系统已为 30 多艘北美船舶、29 台混合港口起重机和 11 座陆基钻井平台提供动力。Corvus 首席执行官 Geir Bjørkeli 表示,公司“来自美国市场的订单显著增加,政府和行业参与者对减少温室气体排放的承诺也日益坚定。提高产能和生产灵活性将是满足预期增长的关键。”新工厂的年储能产能为 200 MWh。 Corvus Energy 美洲总裁 Sveinung Ødegard 解释说,单艘船舶的安装容量通常在 0.5 到 10 MWh 之间。Corvus 的目标是在今年第四季度从新工厂开始交付。Corvus 在公告中指出,拖船行业的需求增加。同样在 5 月 19 日,总部位于休斯顿的工业服务解决方案 (ISS) 宣布,它正在向美国造船厂寻求投标,以建造最多四艘船体,这将成为北美第一艘全电动拖船。这些零排放船只将为总部位于纽约的 Zeeboat 建造,并从 2025 年开始可供租赁,将完全依靠电池供电,不使用柴油发动机——这是北美拖船的首例。该项目的电池已经采购完毕,来自位于不列颠哥伦比亚省温哥华的 Shift Clean Energy。这些公告继续证实,海事电池应用正在走出实验阶段,船舶电气化已经可用且需求旺盛。[有关大型海事 ESS 项目的演示(包括讨论),请观看电池供电渡轮的视频,该渡轮每天在瑞典赫尔辛堡和丹麦赫尔辛格之间每 15 分钟航行 4 公里,每天 46 次。渡轮在两边停下来充电。它每年运送超过 700 万名乘客和近 200 万辆汽车——显然是一台电池供电的主力。特别值得注意的是巨大的岸边充电设备。]
非挥发性电阻开关,也称为忆阻器 1 效应,即电场改变双端器件的电阻状态,已成为高密度信息存储、计算和可重构系统 2 – 9 开发中的一个重要概念。过去十年,非挥发性电阻开关材料(如金属氧化物和固体电解质)取得了实质性进展。长期以来,人们认为漏电流会阻止在纳米薄绝缘层中观察到这种现象。然而,最近在过渡金属二硫属化物 10, 11 和六方氮化硼 12 夹层结构(也称为原子阻断器)的二维单分子层中发现的非挥发性电阻开关推翻了这种观点,并由于尺寸缩放的好处增加了一个新的材料维度 10, 13。我们在此以单层 MoS 2 为模型系统,阐明了原子片中切换机制的起源。原子成像和光谱表明,金属取代硫空位会导致电阻发生非挥发性变化,这得到了缺陷结构和电子状态计算研究的证实。这些发现提供了对非挥发性切换的原子理解,并开辟了精确缺陷工程的新方向,精确到单个缺陷,朝着实现最小的忆阻器的方向发展,以应用于超密集存储器、神经形态计算和射频通信系统 2、3、11。通过结合扫描隧道显微镜/扫描隧道光谱 (STM/STS) 和局部传输研究,我们观察到硫空位(MoS 2 单层中的主要缺陷)在其天然形式下不起低电阻路径的作用,这与金属氧化物存储器中氧空位的影响形成鲜明对比。 然而,从底部或顶部电极迁移的金属离子(例如金离子)可以取代硫空位,产生导电的局部态密度 (LDOS),从而驱动原子片进入低阻状态。 在反向电场下去除金原子后,缺陷恢复其初始空位结构,系统返回到高阻状态。 这种导电点切换机制类似于在原子级上形成导电桥存储器 14。然而,它本质上是不同的,也是独一无二的,因为单个金属离子填充了晶格中的单个空位,而不是通过高度无序的材料形成金属桥。我们发现硫空位在 2 纳米间距处稳定,导致忆阻器密度约为每 1 个单位