钛(Ti)植入物以其机械可靠性和化学稳定性而闻名,这对于肉体再生至关重要。已经开发了各种形状控制和表面修饰技术,以增强生物学活性。尽管胶原蛋白/磷灰石骨微结构对机械功能,抗菌特性以及生物相容性,精确和多功能模式控制对重生微结构至关重要。在这里,我们开发了一种新型的成骨裁缝条纹 - 微图案MPC-TI底物,可诱导对定向骨基质组织的遗传水平控制。这种生物材料是通过微观图2-甲基丙酰氧甲基乙基磷酸胆碱(MPC)聚合物通过选择性光反应到钛(Ti)表面上产生的。Stripe-Micropatened MPC-TI底物建立了一个独特的细胞粘附界面,可通过肌动蛋白细胞骨架比对来稳健地诱导成骨细胞细胞骨架对准,并促进形成骨骼模拟骨骼的骨骼与方向的胶原蛋白/apatite consue。更多,我们的研究表明,通过激活Wnt/β -catenin信号传导途径,促进了这种骨比对过程,该途径是由强烈的细胞比对引导引起的核变形引起的。这种创新的材料对于个性化的下一代医疗设备至关重要,提供了高可定制性和骨微结构的积极恢复。调节细胞粘附和细胞骨架比对的创新方法激活了Wnt/β -catenin信号传导途径,对于骨分化和方向至关重要。的意义陈述:这项研究表明了一种新型的成骨剪裁条纹 - 微调Micropatened MPC-TI底物,该基材基于遗传机制诱导成骨细胞比对和骨基质方向。通过采用光反应性MPC聚合物,我们成功地微孔钛表面,创建了一种生物材料,从而刺激单向成骨细胞排列,并增强了天然骨模拟于天然骨模拟各向异性微观结构的形成。这项研究提出了第一种生物材料,该生物材料人为地诱导机械上各向异性骨组织的构建,并有望通过增强骨骼不同的诱导和方向来促进功能性骨骼再生 - 靶向骨组织的数量和质量。
对来自 PeCan 数据门户的 107 个样本(p < 0.0001)、来自圣犹大儿童研究医院的 15 个骨肉瘤 PDX 肿瘤(p < 0.05,数据未显示)和来自 GEO 数据集 GSE36004 [27] 的 23 个骨肉瘤肿瘤(p < 0.02,数据未显示)的分析表明,WNT5B 和 WNT10B 不在同一肿瘤中表达(图 2)。当 WNT10B 或 WNT5B 表达时,它们的表达呈负相关。因此,针对 WNT10B 或 WNT5B 信号通路的治疗只对一小部分癌症有效,因为它们激活了不同的通路。理论上,β-catenin 核抑制剂(例如 PRI-724 或 tegavivint)对表达 WNT5A 或 WNT5B 的骨肉瘤肿瘤(约占肿瘤的 50%)或不表达 WNT 配体的骨肉瘤肿瘤(约占肿瘤的 30%)不起作用,相反,ROR1 抑制剂对仅表达 WNT10B 的骨肉瘤肿瘤不起作用。
过氧化物酶体增殖激活受体γ(PPARγ)属于核受体超家族,参与多种生理和病理过程。大量研究揭示了PPARγ与多种肿瘤的关系,但PPARγ在膀胱癌中的表达和功能尚存在争议。已证实PPARγ通过调节增殖、凋亡、转移、活性氧(ROS)和脂质代谢影响膀胱癌的发生和发展,其作用机制可能通过PPARγ-SIRT1反馈环路、PI3K-Akt信号通路和WNT/β-catenin信号通路实现。考虑到膀胱癌化疗后复发率高的特点,一些研究者开始关注PPARγ与膀胱癌化疗敏感性的关系。此外,PPARγ配体作为膀胱癌潜在治疗靶点的可行性也已被揭示。总之,本综述总结了相关文献和我们的研究结果,以探索 PPAR γ 在膀胱癌中的复杂作用和功能。
CSC的可塑性受到复杂的信号通路网络的调节,包括Notch,Wnt/β-Catenin和Hedgehog,它们通过与肿瘤微环境(TME)相互作用而激活的[7,8]。此外,表观遗传修饰(例如DNA甲基化和组蛋白修饰)也会影响TNBC中的CSC可塑性[9,10]。尽管在理解CSC可塑性的机制方面取得了重大进展,但仍有至关重要的需要新的治疗策略来靶向TNBC中的CSC [4]。本综述将讨论有关TNBC中CSC可塑性的当前知识及其在TME中的调节。它还将重点介绍开发CSC的靶向疗法的最新进展,包括靶向关键信号通路和表观遗传修饰剂的疗法[11,12]。最后,讨论了将临床前研究结果转化为临床实践的挑战,并提出了该领域的未来研究方向。
临床前模型中的研究支持肠道菌群在结直肠癌(CRC)的发展和进展中起批评作用。特定的微生物物种及其相应的毒力因子或相应的小分子可以通过直接影响上皮细胞的肿瘤转化或与宿主免疫系统的相互作用来有助于CRC的发展和进展。诱导DNA损伤,Wnt/β-catenin和NF-κB促炎途径的激活以及营养素可利用性的改变以及癌细胞的代谢活性是微生物群向CRC贡献的主要机制。在肿瘤微环境中,肠道菌群改变了各种免疫细胞的募集,激活和功能,例如T细胞,巨噬细胞和树突状细胞。此外,微生物塑造了与癌症相关的成纤维细胞和细胞外基质成分的功能和组成,造成了免疫抑制
trim71是在人类中大量表达的基因,在早期的胚胎发生和神经分化中起着至关重要的作用,通过与靶MRNA结合,触发翻译抑制或mRNA降解。3 Qiuying Liu等人,研究人员使用交联的免疫沉淀和测序(CLIP-SEQ)技术探索了小鼠中CH相关的突变。这项研究很重要,因为蛋白质对人类表现出相似的反应。4研究表明,突变的TRIM71蛋白与不同的靶标mRNA结合,表明“功能的获取”。具体而言,小鼠中的R595H-TRIM71与CTNNB1基因中的mRNA结合,该基因编码了β-catenin蛋白,这对于干细胞分化至关重要。5抑制其翻译可阻止神经发育必需蛋白质的产生。相反,R783H-TRIM71与LSD1 mRNA结合,抑制其翻译并导致干细胞分化的缺陷。5
honokiol是一种从中草药木兰中分离出的生物活性成分,可以有效抑制肿瘤细胞的生长。根据文献,Honokiol可以诱导胰腺癌和胃癌细胞的凋亡(4,5),并且还可以抑制黑色素瘤的生长和转移(6)。当前的乳腺癌研究仅限于Honokiol对两个人表皮生长因子受体2(HER2)阴性细胞系MDA-MB-231和MCF-7(7,8)的影响。Honokiol在乳腺癌SK-BR-3细胞中的作用和机制尚未报道。SK-BR-3细胞,它是上皮细胞的粘附细胞。作为具有里程碑意义的乳腺癌细胞,SK-BR-3细胞在许多研究中已被用作实验对象(9-11)。SK-BR-3细胞是具有高HER2表达的乳腺癌细胞。HER2阳性乳腺癌的复发和转移率很高,预后不良(12)。 发现可以有效抑制SK-BR-3细胞生长的抗肿瘤药物对于治疗乳腺癌很重要。 因此,在本研究中,我们使用不同浓度的HONOKIOR治疗乳腺癌SK-BR-3细胞,以观察其对SK-BR-3细胞的增殖,凋亡,侵袭和迁移的影响,并检测WNT信号传导途径相关蛋白质β-Catenin和c-Myc中WNT信号传导途径中表达的变化。 这可以提供新的证据,表明Honokiol可以用作有效治疗乳腺癌的抗肿瘤药物。HER2阳性乳腺癌的复发和转移率很高,预后不良(12)。发现可以有效抑制SK-BR-3细胞生长的抗肿瘤药物对于治疗乳腺癌很重要。因此,在本研究中,我们使用不同浓度的HONOKIOR治疗乳腺癌SK-BR-3细胞,以观察其对SK-BR-3细胞的增殖,凋亡,侵袭和迁移的影响,并检测WNT信号传导途径相关蛋白质β-Catenin和c-Myc中WNT信号传导途径中表达的变化。这可以提供新的证据,表明Honokiol可以用作有效治疗乳腺癌的抗肿瘤药物。我们根据MDAR报告清单介绍以下文章(可在http://dx.doi.org/10.21037/tcr-20-3110中找到)。
恶性肿瘤因其高死亡率和高复发率一直是全球人类最关注的健康问题,肺癌、胃癌、肝癌、结肠癌和乳腺癌是发病率和死亡率排名前五的恶性肿瘤。在肿瘤生物学中,异常信号通路调控是驱动所有恶性肿瘤发生、转移、侵袭等过程的普遍主题。Wnt/β-catenin、PI3K/AKT/mTOR、Notch和NF-kB通路受到广泛关注,且在五大实体肿瘤中存在信号串扰。本文创新性地总结了这些信号通路的研究进展、参与这些通路的分子的潜在机制以及一些miRNA在肿瘤相关信号通路中的重要作用,并简要综述了针对这些信号通路的抗肿瘤分子药物。本综述可为恶性肿瘤的分子生物学机制研究提供理论基础,并为制定注重疗效和减少副作用的新型治疗策略提供重要信息。
简单的摘要:经跨性化学栓塞(TACE)是中阶段肝细胞癌(HCC)的建议治疗方法,由于引入靶向分子和免疫治疗,其治疗方法现在比以前更大。当前一个重要的关注点是中级HCC的TACE患者选择,其中包括极其异质的人群。Gadoxetic酸二钠增强MRI(EOB-MRI)中的肝胆管相(HEB)与β-蛋白酶有关,因此EOB-MRI可以是一种分子成像生物标志物反映肿瘤生物学的生物标志物。尽管EOB-MRI HBP中具有信号异质性的HCC表现出恶性行为,但先前的研究基于EOB-MRI的HBP的信号异质性进行了TACE后的预后。在这项研究中,我们在EOB-MRI上显示了HBP中肿瘤信号异质性的定量分析,对于预测TACE后的预后非常有价值,并根据此定量评估为中级HCC患者提出了治疗策略。
CTNNB1综合征是一种罕见的神经发育障碍(1:50,000),由CTNNB1基因的功能丧失突变引起。ctnnb1基因编码β-蛋白蛋白,该基因在神经元发育,突触形成和大脑成熟中起关键作用。因此,这些突变导致认知障碍,例如智力残疾,学习困难和发展延迟。虽然目前尚无CTNNB1综合征的治疗方法,但该疾病的遗传根本原因可以通过重组腺相关的病毒载体(RAAV)基于基于基因的基因增强疗法来解决。我们设计了六种不同的AAV-CTNNB1构建体(C1-C6)。每个构建体包括CTNNB1编码序列以及各种未翻译的调节元素,目的是识别元素最佳组合,以增强目标细胞中的转基因表达,同时最小化脱离目标表达。为此,将所有构建体分别包装到AAV载体中,并用于转导患者衍生的神经促进剂细胞和皮质脑器官。
