陶瓷气凝胶表现出显著的隔热节能效果,而了解其纳米多孔结构的演变对于控制其热调节性能是必不可少的。在本研究中,我们设计并合成了轻质多孔二氧化硅气凝胶整体材料,并展示了其隔热性能受表面活性剂诱导自组装控制的多孔纳米结构形貌调控。胶束网络和原位气泡形成引导合成整体中形成均匀的孔隙,该整体表现出优异的隔热、隔音性能和强大的机械稳定性,热导率为 0.032 W m −1 K −1 ,在 800 Hz 频率下隔音性能提高 17%,抗压强度为 1.3 MPa,杨氏模量为 15 MPa。该研究为制造用于节能建筑应用的低成本气凝胶整体保温材料提供了新途径。
太空领域的研究和使用,包括最近对月球及更远太空的载人航天探索的复兴,推动了对航天器热防护系统 (TPS) 的更高性能材料的搜索。陶瓷和高性能碳都表现出适合 TPS 应用的材料特性,但可以使用增材制造 (AM) 方法最大限度地提高其性能。振动辅助打印 (VAP) 是一种新开发的 AM 工艺,可以使用高粘度的陶瓷形成聚合物与固体陶瓷颗粒的混合物来制造零件。这项工作探索了利用 VAP 的陶瓷夹层 TPS 的 AM。TPS 外层由碳化硅 (SiC) 组成,具有高抗氧化性、高熔点和低热导率。薄的中间层由碳基材料组成,可提供高平面热导率以重新分配热量。数值模拟表明,这种配置可有效降低模拟再入条件下的最高温度。由聚碳硅烷聚合物和纯 SiC 粉末制备出高粘度混合物,可使用 VAP 进行 3D 打印,并使用碳负载或碳纤维负载细丝通过标准热塑性挤出打印用于组装的中间层。SiC 组件固化温度高达 248.8°C,热解温度高达 1,600°C,并通过 SEM、EDS 和 XRD 进行表征并测试抗压强度。
摘要:微流体生物传感器的主要问题之一是生物层沉积。典型的制造工艺,例如陶瓷的烧制和硅与玻璃的阳极键合,都涉及高温暴露,任何生物材料都很容易受到高温的影响。因此,目前的方法是基于液体沉积,例如化学浴沉积 (CBD) 和电沉积 (ED)。然而,这种方法并不适用于许多生物材料。通过使用等离子体处理引入陶瓷-聚合物键合,部分解决了这个问题。该方法在等离子体激活和用聚合物盖密封系统之间引入了大约 15 分钟的生物改性窗口。不幸的是,一些生化过程相当缓慢,这段时间不足以将生物材料正确附着到表面。因此,介绍了一种基于生物改性后等离子体激活的新方法。至关重要的是,放电是有选择性的;否则,它会蚀刻生物材料。通过使用等离子处理和与聚合物粘合进行选择性表面改性,可以克服制造陶瓷生物传感器的困难。通过接触角测量和傅里叶变换红外 (FTIR) 分析研究了等离子体改性的区域。为了证明这一概念,制造了一个样品结构。结果表明该方法是可行的。
电弧增材制造 (WAAM) 是一种允许高效原位生产组件或再制造的工艺,它能够以更高的沉积速率和更低的成本进行生产。然而,WAAM 组件在沉积过程中会受到散热的影响,从而导致粗柱状晶粒生长,造成机械性能较差,限制工业应用。因此,本研究调查了将 Al 2 O 3 陶瓷粉末颗粒孕育剂引入 AWS A5.9 ER308LSi 不锈钢壁结构中的作用,通过细化晶粒工艺来提高机械性能。在沉积过程中,当温度降至 150ᵒC 时,手动将 Al 2 O 3 陶瓷粉末颗粒添加到每一层。为了弥补这些知识空白,我们进行了一系列完整的拉伸测试。制造了 WAAM 壁并分析了样品的微观结构。结果表明,WAAM SS308LSi 部件在沉积方向上的最高抗拉强度为 560 MPa,与未接种样品相比增加了 6%。这种改进是由于晶粒细化和异质成核的成功。该研究证明了该技术在 WAAM 部件制造或再制造过程中改善机械性能和微观结构的潜力。
挑战 一家位于印度的领先瓷砖制造商希望提高高铝陶瓷瓷砖的生产率和质量。重点领域是在烧结过程中使用更有效的隔离解决方案。目前,作为生砖之间的隔离材料,气泡氧化铝粉末是手动撒布的,然后将瓷砖堆放、装载并在隧道窑中烧制。然而,由于气泡氧化铝粉末在烧制后的瓷砖上“粘性”,需要物理力量来分离瓷砖,这可能会导致裂缝(图 1)。然后手动抛光瓷砖以去除所有粉末痕迹,这非常耗时(图 2)。与摩根在材料和解决方案方面合作,客户希望实现以下目标: • 减少隔离材料烧制前准备和烧制后去除的工时 • 减少瓷砖破裂和表面污染的缺陷 • 提高生产率和产量
美国陶瓷学会公报涵盖学会及其会员的新闻和活动,包括陶瓷界感兴趣的项目,并提供有关陶瓷技术各个方面的最新信息,包括研发、制造、工程和营销。美国陶瓷学会对本出版物的社论、文章和广告部分中信息的准确性不承担任何责任。读者应独立评估本出版物的社论、文章和广告部分中任何陈述的准确性。美国陶瓷学会公报(ISSN 号0002-7812)。©2021。在美国印刷。ACerS Bulletin 每月出版一次(二月、七月和十一月除外),是一本“双媒体”杂志,有印刷版和电子版(www .ceramics .org)。编辑和订阅办公室:550 Polaris Parkway, Suite 510, Westerville, OH 43082-7045。美国陶瓷学会会员可享受订阅服务。非会员印刷版订阅费率(包括在线访问):美国和加拿大,1 年 135 美元;国际,1 年 150 美元。* 费率包括运费。国际转寄服务是美国和加拿大以外的标准服务。*国际非会员也可以选择以 100 美元的价格订阅纯电子版电子邮件。单期,1 月至 10 月/11 月:会员每期 6 美元;非会员每期 15 美元。12 月刊( ceramicSOURCE ):会员 20 美元,非会员 40 美元。单期邮资/手续费:美国和加拿大,每件 3 美元;美国和加拿大加急(UPS 第二天空运),每件 8 美元;国际标准,每件 6 美元。邮政局长:请将地址变更寄至 American Ceramic Society Bulletin, 550 Polaris Parkway, Suite 510, Westerville, OH 43082-7045。定期邮资在俄亥俄州韦斯特维尔和其他邮寄处支付。地址变更需要六周时间。ACSBA7,第 7 卷。100,第 。9,第 1-138 页。所有专题文章均包含在 Current Contents 中。
美国陶瓷学会公报涵盖学会及其会员的新闻和活动,包括陶瓷界感兴趣的项目,并提供有关陶瓷技术各个方面的最新信息,包括研发、制造、工程和营销。美国陶瓷学会对本出版物的社论、文章和广告部分中信息的准确性不承担任何责任。读者应独立评估本出版物的社论、文章和广告部分中任何陈述的准确性。美国陶瓷学会公报(ISSN 号0002-7812)。©2021。在美国印刷。ACerS Bulletin 每月出版一次(二月、七月和十一月除外),是一本“双媒体”杂志,有印刷版和电子版(www .ceramics .org)。编辑和订阅办公室:550 Polaris Parkway, Suite 510, Westerville, OH 43082-7045。美国陶瓷学会会员可享受订阅服务。非会员印刷版订阅费率(包括在线访问):美国和加拿大,1 年 135 美元;国际,1 年 150 美元。* 费率包括运费。国际转寄服务是美国和加拿大以外的标准服务。* 国际非会员也可以选择以 100 美元的价格订阅纯电子版电子邮件。单期,1 月至 10 月/11 月:会员每期 6 美元;非会员每期 15 美元。12 月刊( ceramicSOURCE ):会员 20 美元,非会员 40 美元。单期邮资/手续费:美国和加拿大,每件 3 美元;美国和加拿大加急(UPS 第二天空运),每件 8 美元;国际标准,每件 6 美元。邮政局长:请将地址变更寄至 American Ceramic Society Bulletin, 550 Polaris Parkway, Suite 510, Westerville, OH 43082-7045。定期邮资在俄亥俄州韦斯特维尔和其他邮寄处支付。地址变更需要六周时间。ACSBA7,第 7 卷。100,第 .8,第 1-48 页。所有专题文章均包含在 Current Contents 中。
烧结发生的温度大约高于化合物熔点的一半。由于陶瓷的熔点在所有工程材料中最高,因此烧结温度通常在 1000 至 2000 °C 之间。为了控制最终的微观结构和性能,关键的烧结参数包括加热速度、最高温度、保持时间和气氛。其他可能性包括使用机械压力、电场/电流或电磁波、烧结添加剂等。在工业间歇或连续炉中,缓慢的加热速度、较长的保持时间,以及随后的缓慢冷却速度是标准配置。由于当前的能源危机和全球气候变化,金属和陶瓷零件的烧结等能源密集型工艺不仅增加了生产成本,而且还对其碳足迹和生命周期评估产生负面影响。
激光粉末床熔合中的功能分级材料成分有可能制造具有定制性能的复杂组件。实现这一目标的挑战在于,当前的激光粉末床熔合机技术仅设计用于处理粉末状原料。本研究介绍了一种用于激光粉末床熔合的多原料材料打印方法。利用胶体雾化,在激光粉末床熔合过程中,碳化钨纳米颗粒成功沉积在 316L 不锈钢粉末床上。通过这种方式,在惰性处理室气氛下,一定量的碳化钨纳米颗粒均匀分散在粉末床上。结果,用这种方法打印的样品强度有所增加。同样,胶体介质在产生的微观结构中也起着重要作用。它导致形成一致稳定的熔池和坚固的晶体结构。给出了成功分散大量纳米颗粒的建议。此外,还介绍并讨论了材料雾化在激光粉末床熔合中的应用前景。
摘要:随着对高功率密度电气和电子系统的需求不断增长,促进了具有高能量密度、高电容密度、高电压和频率、低重量、高温可操作性和环境友好性等特性的储能电容器的发展。与电解电容器和薄膜电容器相比,储能多层陶瓷电容器 (MLCC) 具有极低的等效串联电阻和等效串联电感、高电流处理能力和高温稳定性等特点。这些特性对于电动汽车、5G 基站、清洁能源发电和智能电网中的快速开关第三代宽带隙半导体等应用非常重要。目前已有大量关于最先进的 MLCC 储能解决方案的报道。然而,无铅电容器通常具有较低的能量密度,而高能量密度电容器通常含有铅,这是阻碍其广泛应用的关键问题。在这篇综述中,我们介绍了无铅储能 MLCC 的前景和挑战。首先介绍储能机理和器件特性;然后,从成分和结构优化等方面对储能用介电陶瓷进行总结;在详细介绍电极的制备工艺和结构设计后,讨论了储能用多层陶瓷电容器的最新进展;然后,从理论和技术的角度讨论了储能用多层陶瓷电容器在先进脉冲电源和高密度功率转换器方面的新兴应用;最后,讨论了实验室规模无铅储能用多层陶瓷电容器工业化的挑战和未来前景。关键词:多层陶瓷电容器(MLCC);无铅介电陶瓷;储能;高