在极高的温度下,陶瓷的关键参数之一是其抗蠕变性。蠕变行为的表征通常通过弯曲试验进行评估,当拉伸和压缩之间出现不对称时,蠕变行为的表征会变得复杂。为了检测和量化这种不对称行为,建议使用数字图像相关 (DIC)。首先,高温下 DIC 需要解决几个挑战,即随机图案稳定性、辐射过滤和热雾。由于加热陶瓷的可能性有限、应变场不均匀及其水平低,这些挑战更加严重。除了几项实验发展之外,由于使用了基于临时有限元运动学的两种 DIC 全局方法,应变不确定性得到了降低。最后,将所提出的方法应用于高抗蠕变性能设计的工业锆石陶瓷在 1350°C 下的不对称蠕变分析。
Xtreme HG确实是陶瓷涂料技术的突破。这是细节市场的第一批手动陶瓷涂层,可在涂层的寿命中获得高疏水性,含水性和光滑性。随着溶剂的干燥,涂层开始交联,形成了与底物的化学键。进一步的蒸发形成了接触表面上的疏水性,含水量和湿滑的磨损层。Hg具有耐磨的耐磨性表面,如附件数据所示,可以重复洗涤。
兹证明 Morgan Thermal Ceramics(Morgan Advanced Materials Plc 的子公司,地址:York House, Sheet Street, Windsor, Berkshire, SL4 1DD, 英国)的健康与安全管理体系符合 ISO 45001:2018 的要求。注册范围:与高温绝缘纤维产品和隔热罩的设计、开发、制造和供应相关的健康与安全管理体系。其他地点列于后续页面。
FR-995 是一种通用高纯度氧化铝陶瓷材料,具有出色的介电性能、高抗压强度和良好的隔热性能。它比高纯度氧化铝陶瓷更软,更容易硬磨,并且可以进行厚金属化以创建适用于各种应用的密封组件。我们的 FR-995 可以在烧成前进行精密加工,从而能够制造复杂的软尺寸组件。
相也被认为是潜在候选者。9,10 过去几十年来,人们制造并检验了许多此类材料,以确定它们在高超音速飞行期间遇到的极端环境中的使用潜力。与许多需要使用传统金刚石磨削方法来创建测试样本或部件的传统先进陶瓷不同,许多 UHTC 的导电性足以使样本能够使用电火花加工 (EDM) 来制造。11-13 这项工作的目的是确定使用 EDM 制造的样本的强度和断裂韧性是否与使用传统金刚石磨削方法制备的样本不同。密苏里科技大学和陆军研究实验室 (ARL) 还按照相应的美国材料与试验协会 (ASTM) 标准测量了硬度。
摘要:在环境污染日益严重的情况下,为推动绿色能源的研究,介电陶瓷储能材料正受到广泛研究,其具有充放电循环极快、耐用性高的优点,在新能源汽车、脉冲电源等方面有广阔的用途。但普通介电陶瓷铁电材料储能密度较低,因此,本文以BaTiO 3 (BT)为基础,划分出8个组分,通过传统固相烧结法,将AB位置替换为不同比例的各类元素,以提高其储能密度,提高BT基铁电材料的储能效率。本文研究了掺杂样品的XRD、Raman、铁电、介电、阻抗测试结果,确定了最佳组分。通过Bi3+、Mg2+、Zn2+、Ta5+、Nb5+五种元素掺入制备了(1-x)BT-xBi(Mg1/3Zn1/3Ta1/6Nb1/6)O3系列陶瓷。随着掺杂量x的增加,电滞回线变细,饱和极化强度与剩余极化强度下降,储能密度先上升后下降。x=0.08以后的介电特性呈现平缓的介电峰,说明已经形成了铁电弛豫。最佳组分x=0.12的储能密度和效率分别达到了1.75J/cm3和75%,居里温度约为-20◦C,具有在室温下使用的潜力。
屏障 相稳定性/性能 (波士顿大学) 识别具有目标电化学性质的相稳定性边界 共烧结 (圣戈班) 将材料整合到堆叠中,确保多孔性、活性、无缺陷的微观结构。改变化学计量以防止界面反应。加速测试 (PNNL) 开发一种探测主要降解机制的协议
摘要:纳米晶氧化铝-氧化锆基共晶陶瓷是用高能束制备的,由超细、三维缠结的单晶域组成,是一类特殊的共晶氧化物,具有极高的高温力学性能,如强度和韧性以及抗蠕变性。本文旨在全面综述氧化铝-氧化锆基共晶陶瓷的基本原理、先进的凝固工艺、微观结构和力学性能,特别关注纳米晶尺度上的技术现状。首先根据先前报道的模型介绍了耦合共晶生长的一些基本原理,然后简要介绍了凝固技术和从工艺变量控制凝固行为的策略。然后,从不同层次尺度阐明纳米共晶结构的微观结构形成,并详细讨论硬度、弯曲和拉伸强度、断裂韧性和耐磨性等机械性能,以进行比较研究。利用高能束工艺已经生产出具有独特微观结构和成分特征的纳米氧化铝-氧化锆基共晶陶瓷,在许多情况下,与传统共晶陶瓷相比,机械性能有显著改善。