在流动中已经进行了几种PISA制剂,并且特别有吸引力的广泛研究的配方基于块共聚物聚合物聚合物聚合物聚丙烯酰胺 - 丙烯酰胺 - 丙烯酰胺(丙烯酰胺)(PDMAM-PDAAM)。16 - 20这个全丙烯酰胺系统促进了对聚合物合成的“超快”方法,将反应时间降低至10分钟。此外,以前已经为该系统提供了在线分析的力量,因此NMR可以获得高分辨率动力学数据。 18和Guild等。使用在线小角度X射线散射(SAXS)来监视粒径的演变。21在后一种技术的情况下,访问此类(通常是基于设施的)仪器的仪器是有限且昂贵的,并且自动数据处理需要在通常访问有限的软件接口中进行复杂的工作流程。因此,萨克斯州当前有限的效用用于闭环优化。相反,虽然较少的全面信息(尤其是对于更复杂的形态),但动态光散射(DLS)提供了一种更方便,更容易访问的粒子方法 - 具有自动数据处理,并且以明显的可观的成本来表征。dls在一系列系统的流量中已被证明,要么通过计算22 - 27期间的颗粒运动,要么通过停止流量的方法,28
英国伦敦帝国帝国学院的阿伦·沃尔什(Aron Walsh)材料系教授,化学景观正在通过人工智能(AI)社区的新技术和工具的整合而变化。硬件的进度(包括经典的超级计算机和新兴量子计算机)以及包含高级算法和统计机器学习模型的软件进步[1]来促进这些更改。最新的发展(例如大型语言模型和生成扩散技术)正在解锁应用领域,从多模式表征到自动驾驶实验室。本研讨会将介绍数据驱动的化学领域,强调其增强化学发现的潜力,并加快对促进下一代清洁能源技术必不可少的化合物的鉴定[2]。i将包括最新进度的见解,这些进展表征与太阳能应用相关的材料,同时解决诸如可靠的结构 - 专业数据库之类的障碍,以实现更强大的模型,这些模型可重复且可重复[3]。[1]“分子和材料科学的机器学习”自然559,547(2018)[link] [2]“生成人工智能解决了逆材料设计吗?”物质7,2355(2024)[链接] [3]“开放计算材料科学”自然材料23,16(2024)[link]传记阿隆·沃尔什(Aron Walsh)在都柏林三一学院(爱尔兰)开始了他的职业生涯,他的博士学位专注于固体的计算机模拟。在美国国家可再生能源实验室(美国)的博士后住宿后,他在英国巴斯大学(University of Bath)举行了皇家学会大学研究奖学金,并加入了伦敦帝国学院的材料设计主席。他因其在太阳能理论方面的工作和RSC Corday-Morgan奖而被授予EU-40奖,因为他对计算化学的贡献。Aron在Clarivate高度引用的研究人员列表中的特征,并且是《美国化学学会杂志》的副编辑,涵盖了能源材料和人工智能。
对聚合物生产过程的可持续性评估对于评估其环境,社会和经济影响至关重要,但研究仍然很差。本章旨在提高学术界,工业和民间社会对此问题的研究人员和读者的认识,以及评估聚合物绿色的一些简单明了的方法。到此为止,它始于减少聚合物废物的概述,然后是减少产生的废物的主要方法。然后,它在更多详细信息中描述了如何随时可用的绿色指标,例如环境因素(电子因素),可以帮助评估制造过程和聚合物产品,并确定可以进行改进的领域。然后,它描述了可以与E-因子一起使用的方法,以更好地评估生产过程的可持续性,同时还显示了与这些方法相关的局限性/挑战。提出了来自生物质的聚合物发育的主要方法,然后重点介绍了广泛使用的木质素衍生的单体和聚合物(例如香草蛋白)的示例的电子因素计算,以及左旋葡萄糖剂衍生的单体剂和聚合物的快速发展的领域。还提供了改善(可持续)聚合物化学领域的未来方向。
解构木质素时的主要目标是实现有用的产品或中间体的高收益,同时使不良副产品的形成成立,事实证明这是具有挑战性的。11要实现木质素向低分子量化合物的高转化,因此必须打破C - C键。12,13,例如,还原性催化分数(RCF)在很大程度上切割了C-C键完整14,芳香族单体的产量限制为15-30%。可以通过在高温和高压下的催化来实现木质素中的C - C键,但成本相对高。这激发了对替代方法的探索。在先前的工作中,我们报告了一种在环境温度或接近木质素中断裂C - C键的替代方法。这种方法将硫化与芬顿化学的解构结合在一起。在芬顿反应中,Fe 2+与过氧化氢反应,产生Fe 3+和高效的羟基自由基。17 - 19个先前的工作表明,芬顿反应产生的羟基自由基有效地裂解C - C键在磺酸聚合物(如木质磺酸盐)中,20,21种磺化聚乙烯,22和聚苯乙烯硫酸盐。23 - 25通过将硫基团添加到固定铁中,将氧化量反应定位于底物,从而导致这些聚合物有效分解至低分子量产物。Fenton反应在环境温度和大气压下进行。与需要能源密集型过程和高压反应器的方法相比,这是一个优势。此外,由于芬顿反应发生在水中,少量生物相容性铁作为催化剂,因此在生物转化之前几乎不需要后期处理。可以通过调整反应条件和试剂量(铁和H 2 O 2)来控制芬顿反应中实现的解构程度。可以对低分子量产物产物进行广泛的解剖,但是在解构的程度与通过过度氧化对挥发性化合物(例如CO 2)损失的碳量之间存在贸易。过度氧化还通过更大的氧化剂H 2 O 2的消耗导致成本增加。在这里,我们探索了来自Poplar的木质素的解构,Poplar是一种相关的生物能源原料,与用离子液体过程产生的富含糖流相关的26 a a e er分离。27我们先前的工作后,我们首先将杨树木质素磺化。28接下来,我们使用Fenton反应将磺化的木质素解散,表明我们可以通过不同的试剂浓度来控制解结和重聚的程度。然后,我们探索了分解产物的生物学可用性,并证明了分解产物向喷射燃料前体Bisabolene的转化。这项工作的目标是在整个过程中展示原理证明,包括转换为产品。下面我们报告结果并讨论了几个想法,以提高过程中每个步骤的收率。
标题:“基于多功能的ClitoriaTerna(சu〜ª)的药物斑块,这些药物斑块源自siddha和unani文献用于透皮应用”的职位:项目陪伴时间:3年(临时)emoluments:25,000/ - 每月(三年的合并工资)帖子:1个基本资格:分析/无机/物理/有机/常规
硫化氢(H 2 S)是酸石和天然气行业的主要问题,是这些行业大规模生产的高度腐蚀性和有毒气体。H 2 S的光催化降解,目的是生产燃料,是一种新颖且可持续的方法来解决该问题,提供清洁的氢燃料并消除了这种危险的环境污染物。在这种基于光子的绿色策略中,从应用的角度来看,目标设计和轻松合成半导体能量材料至关重要。在这项研究中,在不消耗外部还原剂的情况下,通过一锅热液途径合成了吸附RGO/COMN₂O₄纳米复合材料,并通过碱H₂S溶液的光催化拆分有效地产生氢气。XRD,FTIR和RAMAN分析表明,在热液过程中氧化石墨烯(GO)降低,而无需还原添加剂。高分辨率透射电子显微镜(HRTEM)研究证实了复合材料的组成粒子的附着。甲硫化物吸附研究表明,纳米复合材料光催化剂具有吸附反应物质的高容量(13.97 wt。%)。BET,UV-VIS和PL光谱分析表明,纳米复合材料中RGO的存在会增加光催化剂的表面积,并通过增强光子吸收并减少电子孔重组,从而产生更多的氢。氢释放速率为5217
证据清楚地描述了相关元素的氧化数量的变化,或者要么丢失/获得的电子数量,用于氧化和减少两个细胞过程,并指的是电解过程的能量需求以及电池电位/标准减少电位的电位/标准减少电位,以符合标准的电力化学过程。
质量作用定律、速率和平衡 速率常数和反应级数 速率定律和反应机理(零级、一级、二级反应和分数级) 碰撞理论、过渡态理论和阿伦尼乌斯方程 稳态近似 测量反应动力学和确定速率常数的方法,动力学机制建模 酶动力学(米氏动力学、抑制、变构酶;代谢中的酶反应) 影响反应速率的因素(反应的温度依赖性和活化参数、粘度和分子动力学、反应的扩散控制) 复杂反应的动力学分析(瞬态和反应序列研究简介;电子转移和自由基反应动力学;聚合动力学) 生物分子反应动力学和分子药理学简介(蛋白质 - 配体结合和交换动力学;结合位点、单位点和多个独立位点模型、与膜受体结合、降维)
对能够利用可再生资源并实施数字流程的化学家的需求越来越大,同时意识到监管协议。培训这些领域的专家的必要性源于环境资源的稀缺性,并且需要优化化学过程,以最大程度地减少对环境的负面影响。为了实现这一目标,基于计算机的方法和AI的应用变得越来越重要。在您的学习期间,我们将为您提供深入的化学知识以及现代数字工具和化学法规方面的专业知识。您将受益于我们广泛的学术专业知识以及我们与奥地利和国外化学工业的良好联系。
星际复杂有机分子 (iCOM) 的形成是天体化学中的热门话题。试图重现观测结果的主要范例之一是假设 iCOM 是在覆盖星际尘埃颗粒的冰幔上由于自由基 - 自由基偶联反应而形成的。我们通过计算量子力学方法研究冰表面上 iCOM 的形成。具体来说,我们研究了涉及 CH 3 + X 体系 (X = NH 2 、CH 3 、HCO、CH 3 O、CH 2 OH) 和 HCO + Y (Y = HCO、CH 3 O、CH 2 OH) 以及 CH 2 OH + CH 2 OH 和 CH 3 O + CH 3 O 体系的偶联和直接氢提取反应。我们利用密度泛函理论计算了两个冰水模型(分别由 33 个和 18 个水分子组成),计算了这些反应的活化能垒以及所有研究的自由基的结合能。然后,我们利用反应活化能、解吸能和扩散能以及通过 Eyring 方程推导的动力学估算了每个反应的效率。我们发现表面上的自由基 - 自由基化学并不像通常假设的那么简单。在某些情况下,直接的氢提取反应可以与自由基 - 自由基偶联竞争,而在其他情况下,它们可能包含较大的活化能。具体而言,我们发现 (i) 乙烷、甲胺和乙二醇是相关自由基 - 自由基反应的唯一可能产物;(ii) 乙二醛、甲酸甲酯、乙醇醛、甲酰胺、二甲醚和乙醇的形成可能与各自的氢提取产物竞争; (iii)乙醛和二甲基过氧化物似乎不太可能是谷物表面产物。