Belle II实验的检测器和在未来电子峰值事件中的顶级夸克质量质量在其指导下在Colduscular Physics(混合中心瓦伦西亚大学和CSIC)的指导下进行。
在数十年的理论上,对于解锁宇宙秘密所需的异国情调的新探测器系统,最终使Photon计数CT成为可能,例如Higg的Boson(aka aka aka the“上帝粒子”)在CERN的大型Handron撞机上。要捕获和辨别对撞机中的大量光子,需要探测器的“刷新”速率为几纳秒,这也可以应用于每秒数百万X射线通过CT机器中的患者。在这样做以来,自1972年CT发明以来,CT的数字转换过程的类似物被消除了,因此消除了创建图像所需的X射线数量的数量至少少50%。此外,每个X射线的能量都是可注册的,而不是成千上万X射线不同能量的团块的平均值,因此所产生的图像是在下面的组织中更真实,更有用的表示 - 这种所谓的光谱能力可改善疾病过程的可视化和诊断。此外,光谱能力意味着通常需要在体内进行两到三个运行的扫描,以查看组织对注射的染料的反应,现在只需要一次运行 - 这是三分之二的辐射较少(加上可能进一步的50%或更少的辐射辐射)。
xTechPrime 启动后,陆军收到了 345 份概念白皮书,重点介绍了能够通过人工智能和机器学习、自主性、气候和清洁技术、有争议的后勤和保障、沉浸式和可穿戴设备以及传感器等领域的解决方案为士兵提供支持的技术。随后,由陆军主题专家组成的评估小组缩小了这些提交内容的范围。46 名半决赛选手随后通过可选的 xTech Collider 活动或其他安排与技术集成商组成团队。这些团队对他们的技术概念进行了虚拟推介,从而再次筛选出 24 名决赛选手。12 月 11 日至 14 日,竞赛举办了一场最终技术推介活动,评估人员在三轮竞赛中选出了 15 名获胜者,每人共获得了 40,000 美元的现金奖励。要查看 xTechPrime 获奖者名单,您可以访问 xTech 计划的新闻和公告页面。
四个加速器在我们的封面图像中拼接在一起的整个欧洲核查所历史的七十年。他们还讲述了粒子物理标准模型的电动扇区的大部分实验故事。质子同步子产生了用于发现中性电流的中微子束。使用超级质子同步子发现W和Z玻色子。大型电子 - 峰值对撞机(LEP)限制了模型。和Higgs玻色子是在大型强子对撞机上发现的,它 - 相当显着 - 现在与Electroweak Precision中的LEP相当于LEP(P29)。接下来会发生什么?随着欧洲粒子物理战略的第三次更新,辩论现在开始认真开始,并邀请您贡献(P7)。早期研究人员有至关重要的作用。此版本的核心专门针对他们对高能物理学未来的13个观点(P46)。在此版本中也是如此:来自CERN的专家回顾未来(p53);接受CERN委员会主席(P63)的采访;从LHC到医学和工业的技术转移(p37);新物理可能会隐藏在希格斯的自我耦合中(p61);晶格QCD表明,MUON G -2中的新物理学比以前希望的少(P21)。德国社区辩论CERN的未来(P22);基本的时间将抗蛋白酶冷却的时间从15小时到8分钟(P8)。
Design and analysis of a HTS internally cooled cable for the Muon Collider target and capture solenoid magnets L. Bottura(1), C. Accettura(1), A. Kolehmainen(1), J. Lorenzo Gomez(2), A. Portone(2), P. Testoni(2) (1) CERN, Geneva, Switzerland (2) Fusion for Energy (F4E), Barcelona,西班牙摘要MUON对撞机是被认为是高能物理学的下一步的选择之一。它面临许多挑战,并非最不重要的是超导磁铁技术。目标和捕获电磁阀是其中之一,大约18 m长的通道由轴向电磁磁铁组成,轴是20 t的1.2 m自由孔和峰场。其中一个主要问题来自核辐射环境,可能影响线圈的稳定操作,及其材料完整性。能量光子会导致较大的辐射热负荷,在冷质量中的几个kW的阶数,并沉积相当大的剂量,几十mgy。中子在10 -3 dpa的水平下造成物质损害。这些值处于超导线圈技术的当前限制。我们在这里描述了目标的概念设计并捕获了螺线管,重点是HTS电缆设计,这在很大程度上是受到麻省理工学院开发的毒蛇概念的启发。我们展示了如何解决特定于选择的HTS电缆的边缘和保护,冷却和机制。引言2021年欧洲粒子物理战略的更新已确定五个高优先级R&D主题将针对高能物理学的下一步[1]。比田间的μ子的回旋半径大得多,因此梁在通道中的绝热膨胀。所确定的主题之一[2]是Muon Collider(MC)的概念设计,该机器可以在能量前沿探索物理。MC可以在非常高能量的情况下提供点状颗粒的碰撞,因为可以在环中加速muon,而不会受到电子经历的同步辐射的严重限制。对于超过3 TEV的质量中心能量,MC可以为通向能量边界的高光度对撞机提供最紧凑,最有效的途径。然而,对高光度的需求面临着由于静止时期短暂的寿命(2.2μs)引起的技术挑战,以及难以生产带有较小散发体的臂线束的困难。应对这些挑战需要协作[3]来发展创新概念,尤其是在超导磁铁领域。[4]最苛刻的挑战之一,本文的重点之一是托管目标和捕获通道的螺线管,该通道产生了宇宙束。muons是由于正质和负亲的衰减而产生的,这些衰变是由短,高强度质子脉冲与固体靶标(例如碳棒)碰撞所产生的。PION生产目标插入稳态的高场螺线管中,其功能是捕获电荷的亲,并引导它们进入创建MUON的衰减通道。沿通道轴的磁场轮廓需要具有特定的形状,目标峰场为20 t,在通道出口的衰减约为1.5 t,总长度约为18 m。场的特征长度约为2.5 m,即
美国陆军希望邀请有兴趣的实体参加 xTechPrime 竞赛,这是一个让符合条件的小型企业和技术集成商组建团队的论坛,旨在提出创新的技术解决方案来解决当前陆军的需求。本次竞赛的技术集成商定义为“除第 1 部分中选定的小型企业之外的任何直接与美国政府合作的企业。他们有管理至少一个分包商的经验,并负责确保按照合同规定完成工作。这可以包括但不限于:其他小型企业、大型企业和独资企业。” xTechPrime 竞赛将挑战小型企业与技术集成商组队合作,提交有助于陆军当前现代化目标的创新解决方案。 xTechPrime 将协助推动创新,最终向陆军提供新颖且经常被忽视的技术。通过 xTechPrime 竞赛,陆军鼓励小企业和技术集成商之间的合作,为小企业提供组建团队竞争非稀释性现金奖励的机会,并为最初的小企业申请者提供直接进入第二阶段小企业创新研究 (SBIR) 合同奖的机会。在竞赛期间,小企业将在第 1 部分:概念白皮书的开放提交窗口期间提交一份初步概念白皮书。陆军和国防部 (DoD) 专家小组将评估提案,并将选出最多 50 家小企业作为第 1 部分的获胜者。获胜者可能会获得高达 5,000 美元的现金奖励,并收到参加由 xTech 计划主办的 xTech Collider 活动的邀请。Collider 活动将欢迎所有技术集成商,并将尽可能广泛地宣传。该活动将为第 1 部分的小型企业获胜者和技术集成商提供一个场所,以促进介绍和进行知识交流,目标是可能组建团队参加第 2 部分:技术推介。美国政府不会参与组建团队或实体选择构建伙伴关系的机制。对撞机活动仅旨在促进团队合作的潜力。在对撞机活动或活动之外组建的团队将是唯一受邀在第 2 部分:技术推介期间向陆军和国防部专家小组就其技术概念和团队能力进行虚拟推介的实体。推介活动结束后,将选出最多 30 支队伍,每支队伍将获得最高 15,000 美元的现金奖励,并受邀参加第 3 部分:决赛。最多 15 支队伍将从第 3 部分中选出最终的比赛获胜者,每支队伍将获得最高 20,000 美元的额外现金奖励。第 3 部分获胜团队中的原始小企业申请人还将有机会提交一份价值高达 190 万美元的潜在直接进入第二阶段合同的提案。有关资格和竞争结构的更多详细信息如下所列。本通知中所述的努力是根据 10 USC § 4025(以前的 2374a)和 15 USC § 638 和 10 USC § 4022(原型项目)的授权进行的,以仅向本公告中所述的合格和选定实体颁发现金奖励和潜在的 SBIR 合同(15 US Code §638)。虽然该计划的权限是 10 USC §
顶夸克代表着独特的高能系统,因为它们的自旋关联可以被测量,从而允许用高能对撞机中的量子比特来研究量子力学的基本方面。这里,我们给出了通过高能对撞机中的量子色动力学 (QCD) 产生的顶-反顶 (t¯t) 夸克对的量子态的一般框架。我们认为,一般来说,在对撞机中可以探测的总量子态是由产生自旋密度矩阵给出的,这必然会产生混合态。我们计算了由最基本的 QCD 过程产生的 at¯t 对的量子态,发现在相空间的不同区域存在纠缠和 CHSH 破坏。我们表明,任何现实的 at¯t 对的强子产生都是这些基本 QCD 过程的统计混合。我们重点关注在 LHC 和 Tevatron 上进行的质子-质子和质子-反质子碰撞的实验相关案例,分析量子态与碰撞能量的依赖关系。我们为纠缠和 CHSH 破坏特征提供实验可观测量。在 LHC 上,这些特征由单个可观测量的测量给出,在纠缠的情况下,这代表违反柯西-施瓦茨不等式。我们将文献中提出的 t¯t 对的量子断层扫描协议的有效性扩展到更一般的量子态和任何产生机制。最后,我们论证了在对撞机中测量的 CHSH 破坏只是一种弱形式
量子计算是解决各种问题的有前途的工具,因为指数级大的希尔伯特空间可以用多项式数量的量子比特来描述。在高能物理学中,量子场论的模拟尤其有前景,其中每个时空点都有量子自由度,但存在用于状态准备和时间演化的多项式算法 [1,2]。然而,并非所有经典硬算法在量子计算机上都更高效。在高能物理学 (HEP) 中,有一类特别受关注的算法是量子机器学习 (QML)。在本文中,QML 指的是在量子计算硬件上执行的机器学习任务。虽然 QML 并不比经典机器学习 (CML) 更高效,但已经有许多实证研究探索 QML 在 HEP 中的潜力 [3-19](另请参阅参考文献 [20] 的最新综述)。这些研究得出的一个共同结论是,QML 似乎在小型训练数据集上表现优于 CML。1 虽然对这一观察结果没有严格的解释,但可能是因为 QML 提供了更好的归纳偏差和/或使用较少的参数提供了更多的表达能力。在几乎所有的研究中,当有超过 O (100) 个示例时,CML 的表现都优于 QML。在具有如此少量训练事件的对撞机 HEP 中,几乎没有问题。本文的目标是探索近期 QML 在对撞机物理中的实际用例。另请参阅参考文献 [ 21 ] 以了解 QML 与 CML 的更广泛背景。
Higgs玻色子生产时间衰减速率和差异横截面的测量最近通过Atlas实验在几个衰减通道中使用了多达139 fb-1的proton-Proton碰撞数据,该衰减通道在大型Hastron Collider处记录了Proton-Proton碰撞数据的139 Fb-1。本文介绍了这些希格斯玻色子测量的多种解释。根据标准模型有效的现场理论运算符的影响,对不同衰减通道中的生产模式横截面,简化模板横截面和基准差异横截面进行了测量,并报告了对相应的Wilson系数的约束。的生产和衰减率测量值在标准模型的UV完全扩展中进行解释,即在对齐限制限制附近的两种型二键型模型(2HDM)和各种MSSM基准标准场景的最小超对称标准模型(MSSM)。2HDM参数(cos(cos(𝛽 -𝛼),tan 𝛽)和MSSM参数(tan 𝛽,tan𝛽)的约束与直接搜索其他Higgs玻色子获得的约束是互补的。
在2012年发现希格斯玻色子后,通过ATLAS实验在CERN大型强子对撞机上进行超对称性的搜索。搜索程序在广度和深度上都扩展了,从增加的综合光度和更高的质量质量能量2中获利,并通过使用新的实验签名和创新分析技术来获得对超对称参数空间未开发的超对称参数空间的新敏感性。本报告总结了在地图集上的超对称搜索,该搜索使用多达140 fb-1的√= 13 = 13 tev的碰撞,包括针对gluinos,squarks和electroweakinos的生产的限制,用于场景,以进行有或没有R-Parity保存的情况,以及包括一些型号,包括一些型号,包括多个型号的型号。