Loading...
机构名称:
¥ 1.0

量子计算是解决各种问题的有前途的工具,因为指数级大的希尔伯特空间可以用多项式数量的量子比特来描述。在高能物理学中,量子场论的模拟尤其有前景,其中每个时空点都有量子自由度,但存在用于状态准备和时间演化的多项式算法 [1,2]。然而,并非所有经典硬算法在量子计算机上都更高效。在高能物理学 (HEP) 中,有一类特别受关注的算法是量子机器学习 (QML)。在本文中,QML 指的是在量子计算硬件上执行的机器学习任务。虽然 QML 并不比经典机器学习 (CML) 更高效,但已经有许多实证研究探索 QML 在 HEP 中的潜力 [3-19](另请参阅参考文献 [20] 的最新综述)。这些研究得出的一个共同结论是,QML 似乎在小型训练数据集上表现优于 CML。1 虽然对这一观察结果没有严格的解释,但可能是因为 QML 提供了更好的归纳偏差和/或使用较少的参数提供了更多的表达能力。在几乎所有的研究中,当有超过 O (100) 个示例时,CML 的表现都优于 QML。在具有如此少量训练事件的对撞机 HEP 中,几乎没有问题。本文的目标是探索近期 QML 在对撞机物理中的实际用例。另请参阅参考文献 [ 21 ] 以了解 QML 与 CML 的更广泛背景。

加州大学伯克利分校

加州大学伯克利分校PDF文件第1页

加州大学伯克利分校PDF文件第2页

加州大学伯克利分校PDF文件第3页

加州大学伯克利分校PDF文件第4页

加州大学伯克利分校PDF文件第5页