Arxada 和 Novoset 达成全球许可协议,开发下一代复合材料 • Arxada 将开发、制造和商业化 Novoset 受知识产权保护的新型碳氢化合物树脂系统 • 扩展 Arxada 现有的用于电信的复合材料能力,以包括 5G 和其他应用 瑞士巴塞尔和美国新泽西州皮帕克 – 2022 年 5 月 3 日 – 全球领先的特种化学品制造商 Arxada 和以技术和工艺为主导的“系统解决方案”热固性聚合物材料公司 Novoset LLC 宣布签署独家许可协议,用于生产和销售用于电信和先进半导体封装的下一代碳氢化合物树脂系统。根据协议条款,Arxada 将开发、制造和商业化 Novoset 开发的树脂系统。该技术将由 Arxada 的复合材料部门开发,该部门是其特种产品解决方案 (SPS) 业务的一部分。新的树脂系统将服务于多个市场,包括不断增长的 5G 电信领域。该产品将加入 Arxada 的 Primaset® 系列高性能热固性树脂,用于电信基础设施和先进的半导体封装行业,以巩固其现有 3G 和 4G 电子应用产品的成功。特种产品解决方案总裁 Antje Gerber 表示:“与 Novoset 的合作符合我们设计和开发未来产品解决方案以满足客户需求的战略。将这种新型碳氢树脂系统添加到我们的复合材料产品组合中将进一步增强我们的 Primaset® 系列,利用我们现有的开发和创新能力扩展到非常受欢迎的市场,包括快速增长的 5G 电信市场。” Novoset, LLC 首席执行官 Sajal Das 博士补充道:“我们很高兴能与 Arxada 合作开发我们的创新专有技术。这项协议将使我们能够利用 Arxada 的工艺开发和生产能力以及广泛的商业基础设施来充分发挥这项新技术的潜力。此外,我们还为这些产品开发了一种新型催化剂技术,适用于传统和先进的复合材料制造方法。”与现有的 Arxada 产品相比,新的 Primaset® HC-100 和 HC-200 树脂系统将提供卓越的介电性能、耐高温性和超低吸湿性,从而改善机械性能和工艺工程。这些产品将在 Arxada 位于瑞士菲斯普的世界一流工厂开发和生产。Arxada 目前正在开发这些产品,并计划于 2022 年第二季度开始向客户提供样品。
问题主机DOF 3D DOF主机/3D误差变量和收敛模式非均匀性动脉粥样硬化斑块 - 光束23529 761244 3%3%3%tranverse轴向应变,宿主 - > 3D复合cection cection cection spar - 光束89175 227675 2276739 4%25%25%25%25%25%25%的Edge Edge Ender-Ender 7 3D-3D-3D-3D-3D-3D-> - > 4560150 3% 30% Free-edge failure index, 3D -> HOST Composite notched specimen – Plate 10000 10000000 0.1% 3% Tensile peak stress, HOST -> 3D Multilayered beam – Beam 23595 63210 37% 0.4% Plastic strain, HOST -> 3D Double-swept blade – Beam 13200 203808 6% 1% Natural frequencies, HOST -> 3D Viscoelastic beam – Beam 5475 56400 10% 5% Modal loss factor, HOST -> 3D Randomly distributed RVE – Beam 13642 31524 43% 2% Local shear strain, HOST -> 3D Lattice structure – Beam 13584 617580 2% 1% Displacement, HOST -> 3D Three-point bending of a sandwich beam – Beam 14229 201504 1% 0% Transverse stress, HOST -> 3D Low-velocity impact on a bi-metallic plate – Plate 10659 856251 1% 16% Plastic strain, 3D -> HOST Large deflections in asymmetric cross-ply beams – Beam 5124 573675 1% 7% Shear stress, HOST -> 3D Disbonding in sandwich beams – Beam 41160 171888 24% 1% Peak load, HOST -> 3D Curing of a composite part –梁16569 599571 3%0%弹簧斜角,3D->主机
注意 本文件由美国运输部赞助发布,旨在促进信息交流。美国政府对其内容或使用不承担任何责任。美国政府不认可产品或制造商。此处出现的贸易或制造商名称仅仅是因为它们被认为对本报告的目标至关重要。本报告中的调查结果和结论均为作者的观点,并不一定代表资助机构的观点。本文件不构成 FAA 政策。有关其使用,请咨询技术文档页面上列出的 FAA 赞助组织。本报告可在联邦航空管理局 William J. Hughes 技术中心的全文技术报告页面:actlibrary.tc.faa.gov 以 Adobe Acrobat 便携式文档格式 (PDF) 获得。
■ 所有标准和出版物 ■ 标准产品 ■ 研讨会论文和 STP ■ 手册、专著和数据系列 ■ 技术报告 ■ 期刊 ■ 阅览室 ■ 作者
摘要:本文介绍了世界商业周期的同步和领先综合月度指标——全球经济晴雨表。两者均以世界产出增长率周期为目标。这些指标的计算包括两个主要阶段。第一阶段包括变量选择程序,其中使用预设的相关阈值和参考序列的目标结果作为选择标准。在第二阶段,将选定的变量组合并转换为相应的综合指标,以参考序列作为响应变量,计算为第一个偏最小二乘因子。在本文提到的最后一个年份(2018 年 12 月),在第一阶段测试的 1681 个变量的 6605 个转换中,1275 个被选入同步指标,1228 个被选入领先综合指标。我们在伪实时设置中分析了这两个新指标的特征,并证明这两个指标都是迄今为止发布的全球商业周期少数指标的有用补充。
近年来,天然纤维增强复合材料由于其质量轻、耐磨、可燃、无毒、成本低和可生物降解等特性而受到广泛关注。在各种天然纤维中,亚麻、竹、剑麻、大麻、苎麻、黄麻和木纤维尤其受到关注。世界各地对利用天然纤维作为增强材料来制备各种类型复合材料进行了大量研究。然而,缺乏良好的界面黏附力、熔点低和耐湿性差使得天然纤维增强复合材料的使用不那么有吸引力。天然纤维的预处理可以清洁纤维表面、对表面进行化学改性、停止吸湿过程并增加表面粗糙度。在各种预处理技术中,接枝共聚和等离子处理是天然纤维表面改性的最佳方法。天然纤维与乙烯基单体的接枝共聚物可在基质和纤维之间提供更好的粘合性。本文回顾了预处理天然纤维在聚合物基质复合材料中的应用。还讨论了天然纤维表面改性对纤维和纤维增强聚合物复合材料性能的影响。POLYM. ENG. SCI.,49:1253–1272,2009 年。ª 2009 年塑料工程师协会
摘要。飞机燃气轮机发动机的开发已广泛用于开发高级材料。然而,这种复杂的开发过程是通过减少体重,更高的温度能力和/或降低冷却来证明的,每种都会提高效率。这是高温陶瓷取得了很大进步的地方,陶瓷基质复合材料(CMC)在前景中。CMC分为非氧化物和基于氧化物的CMC。两个家庭的材料类型具有很高的潜力,可以在高温推进应用中使用。典型的基于氧化物的基于氧化物纤维和氧化物基质(OX-OX)。一些最常见的氧化物子类别是氧化铝,绿地,陶瓷和氧化锆陶瓷。这样的基质复合材料例如在燃气轮机发动机和排气喷嘴的燃烧衬里中使用。然而,直到现在,尚未就此类应用的可用基于氧化物的CMC进行彻底的研究。本文着重于评估有关机械和热性能的可用氧化陶瓷基质复合材料的文献调查。
将信息之间的信息(指示或无向)链接。sig1 = ml-dsa.sign(m ||“也存在ED25519 SIG”); sig2 = ed25519.sign(M ||“也存在ML-DSA SIG”); •是一个模式。•旨在根据
对于军用飞机而言,燃气涡轮发动机制造商和最终用户面临的一个关键问题就是耐久性。尤其是加力燃烧段的条件非常恶劣,发动机喷嘴的设计寿命通常只有涡轮发动机其他硬件的一半。目前的喷嘴基于由密封件和襟翼制成的轴对称可变喷嘴。这些组件必须承受极端温度(通常超过 1000°C)以及与加力燃烧器点火相对应的快速热循环。此外,加力燃烧段通常具有燃烧功能不均匀的特点,这会在某些喷嘴瓣上产生热条纹。因此,这些部件会受到非均匀热流的影响,襟翼和密封件的重叠设计尤其明显,从而在整个宽度上产生高热应力。镍基合金通常用于发散襟翼和密封部件。严酷的热机械环境使镍基部件产生大量开裂,再加上高温 1 导致的蠕变变形。结果是部件拆卸增加,直接影响可操作性、维护和成本。军用发动机对热段部件更长使用寿命和更高推重比的追求为陶瓷材料打开了大门。陶瓷基复合材料 (CMC) 适用于暴露在高温(高达 1000°C)下的加力燃烧段,包括高热梯度。因此,人们继续对在军用燃气涡轮发动机中开发、测试和部署 CMC 感兴趣,一些开发已经取得成功。这是为 F/A-18 E/F 超级大黄蜂 2 战斗机提供动力的 F414 发动机喷嘴引入 SiC/C CMC 的情况,以及为阵风 3 战斗机提供动力的 M88 发动机喷嘴外襟翼引入 C/SiC CMC 的情况。考虑用于燃气轮机部件的 CMC 涵盖了通过化学气相渗透 (CVI)、溶胶凝胶路线、聚合物渗透和热解 (PIP) 和熔融渗透 (MI) 4 制造的各种纤维和基质。所得材料能够承受排气喷嘴的高温和热疲劳。然而,CMC 组件的耐久性与其抗氧化性直接相关,这会影响其热机械潜力并导致部件破裂。已经对几种 CMC 密封件进行了地面测试,并在具有代表性的全地面发动机寿命后测量了机械性能。近几年,斯奈克玛推进固体公司 (SPS) 开发了先进的 SiC/SiC 和 C/SiC 材料,包括多层编织和自密封基质。普惠公司和空军研究实验室正在考虑将这些材料用于 F100-PW-229 发动机喷嘴发散密封件,该密封件为 F16 和 F15 战斗机提供动力。本文介绍了发动机经验和后测试特性的结果。将讨论材料系统对燃气轮机喷嘴应用的适用性。