注意 本文件由美国运输部赞助发布,旨在促进信息交流。美国政府对其内容或使用不承担任何责任。美国政府不认可产品或制造商。此处出现的贸易或制造商名称仅仅是因为它们被认为对本报告的目标至关重要。本报告中的调查结果和结论均为作者的观点,并不一定代表资助机构的观点。本文件不构成 FAA 政策。有关其使用,请咨询技术文档页面上列出的 FAA 赞助组织。本报告可在联邦航空管理局 William J. Hughes 技术中心的全文技术报告页面:actlibrary.tc.faa.gov 以 Adobe Acrobat 便携式文档格式 (PDF) 获得。
问题主机DOF 3D DOF主机/3D误差变量和收敛模式非均匀性动脉粥样硬化斑块 - 光束23529 761244 3%3%3%tranverse轴向应变,宿主 - > 3D复合cection cection cection spar - 光束89175 227675 2276739 4%25%25%25%25%25%25%的Edge Edge Ender-Ender 7 3D-3D-3D-3D-3D-3D-> - > 4560150 3% 30% Free-edge failure index, 3D -> HOST Composite notched specimen – Plate 10000 10000000 0.1% 3% Tensile peak stress, HOST -> 3D Multilayered beam – Beam 23595 63210 37% 0.4% Plastic strain, HOST -> 3D Double-swept blade – Beam 13200 203808 6% 1% Natural frequencies, HOST -> 3D Viscoelastic beam – Beam 5475 56400 10% 5% Modal loss factor, HOST -> 3D Randomly distributed RVE – Beam 13642 31524 43% 2% Local shear strain, HOST -> 3D Lattice structure – Beam 13584 617580 2% 1% Displacement, HOST -> 3D Three-point bending of a sandwich beam – Beam 14229 201504 1% 0% Transverse stress, HOST -> 3D Low-velocity impact on a bi-metallic plate – Plate 10659 856251 1% 16% Plastic strain, 3D -> HOST Large deflections in asymmetric cross-ply beams – Beam 5124 573675 1% 7% Shear stress, HOST -> 3D Disbonding in sandwich beams – Beam 41160 171888 24% 1% Peak load, HOST -> 3D Curing of a composite part –梁16569 599571 3%0%弹簧斜角,3D->主机
摘要:本文介绍了世界商业周期的同步和领先综合月度指标——全球经济晴雨表。两者均以世界产出增长率周期为目标。这些指标的计算包括两个主要阶段。第一阶段包括变量选择程序,其中使用预设的相关阈值和参考序列的目标结果作为选择标准。在第二阶段,将选定的变量组合并转换为相应的综合指标,以参考序列作为响应变量,计算为第一个偏最小二乘因子。在本文提到的最后一个年份(2018 年 12 月),在第一阶段测试的 1681 个变量的 6605 个转换中,1275 个被选入同步指标,1228 个被选入领先综合指标。我们在伪实时设置中分析了这两个新指标的特征,并证明这两个指标都是迄今为止发布的全球商业周期少数指标的有用补充。
\ 5.2可以使用分解方法的一些示例,可以分析许多GM-(n+1)组中数字的分解,因为该数字可以用许多n+1个因子分配。如果确实能够通过一组不同的n+1值分配复合数,则存在使用划分属性来改善复合数的因子的方法。但是,如果许多n+1值不可用,则无法实现上述标准。这项技术可能会使设计创造性或改进的分解算法变得更加容易,尤其是对于密码应用程序中使用的大数字。对与这种分解方法相关的难度的完整调查是使用此方法进行未来研究的潜在途径。
本研究设计并评估了两个光纤增强的复合模型,以进行轻质弹道保护。Model One使用Kevlar(KF),Carbon(CF)和玻璃纤维(GF)的六层,并由不饱和聚酯树脂(UPS),天然橡胶(NR)和Corn Starch(CS)的混合粘合剂键入不锈钢网(CL)。型号型号具有相同的结构,但具有更高的UPS含量,可改善粘结和刚度。的机械性能,包括冲击力,硬度,拉伸强度,抗压强度和弯曲行为,对这两种模型进行了系统评估。使用从卡拉什尼科夫(AK-47)步枪发射的7.62×39毫米弹药的现场弹道测试,证明了这两种模型都成功地将弹丸限制在复合层中而没有完全渗透。X射线成像证实了复合材料的结构完整性,因为子弹还嵌入了层中。第二型模型表现出优质的结构冲击力(150 kJ/m²),抗压强度(222.07 MPa)和拉伸刚度(Young's Modulus:7.37 MPa),表现出优于第一模型,该模型表现出较高的耐能力和能量吸收能力(断裂菌株:33.3%)。结果强调了这两个模型的互补强度,这表明它们的混合设计潜力。这项研究强调了纤维增强复合材料在开发用于个人和车辆应用的具有成本效益,轻巧的弹道保护系统中的潜力。
聚苯乙烯酮(PEEK)是一种具有高机械性能,出色的耐热性,耐化学性和低热稳定性和可传播性(良好绝缘)的材料。所有这些特性都使许多领域中使用的材料,例如航空航天工程,电子,汽车工程,化学工业,医疗设备。除了用作纯树脂外,还可以用各种增强材料(例如玻璃纤维,碳纤维,石墨等)加固。较高的制造成本意味着该材料主要用于需要高性能的应用。由用碳纤维加固的树脂基质制成的复合材料是本研究的主题。由于该行业的众多应用和需求,聚醚酮是一种良好的材料,并且许多作品呈现出有关此材料的结果。两次评论试图涵盖与该材料相关的多种方面,用作生产碳纤维增强复合材料的树脂[1,2]。在使用PEEK矩阵和纤维增强复合材料时产生的艺术状态和问题可以在许多评论中找到(即[2-7])。[8]中显示了PEEK基质和碳纤维增强材料的基本特性。在[9]中获得了带有短纤维和杂化碳纤维的PEEK复合材料的行为的结果。测试是在不同温度下从室温开始,然后在[-50°C的范围内进行的; +85°C]研究温度依赖性。它的使用允许该领域的重大发展。在许多实际应用中,温度的效果变得很重要,有许多方法可以依赖纤维增强复合材料的温度依赖性。为了研究这种依赖性,在[10]中提出了构型定律,该定律使用ramberg-osgood的关系,为进行研究的温度范围提供了令人满意的估计。实验室检查在-45°C和75°C之间的温度范围内验证所提出的模型。本文中提出的模型具有较小数量的参数,并提供比现有模型更高的精度,并在本文中进行了比较。在[11]中介绍了通过增材制造过程获得的结构组件分析模型的研究。在[12]中研究了单向窥视和连续的碳纤维增强热塑性材料。在循环载荷的情况下,将寿命与在静态测试中获得的寿命进行比较,在这两种情况下,应力水平都是相同的。在专业文献[13]中充分记录了PEEK/碳型复合材料的粘弹性行为,并提到了根据时间和温度参数确定这些复合材料的行为的方法。Schapery [14]提出的用于研究粘弹性行为的模型的特征是研究人员广泛接受。在[15]中改善了该模型,以考虑到研究人员随着时间的推移观察到的Schapery模型的不一致。结果表明范围最近的一篇论文[16]的作者表明,Schapery的非线性粘弹性表征的方法可以有效地建模测试。
摘要:基于金属的纳米颗粒(MNP)具有在伤口愈合和组织工程中应用的巨大潜力,并且由于其独特的结构,高生物活性和出色的可设计性特征,越来越多的研究已致力于修改这些物种,以生成具有理想的光学,电气,电气和磁性的新颖化合物。但是,对于MNP及其所得复合材料可用的修改方法,很少进行系统和详细的评论。在这篇综述中,有关MNP在伤口敷料中的优化修饰公式进行了全面摘要,并讨论了用于准备复合伤口敷料的技术。此外,还评估了新型纳米复合材料制剂的安全性和报告系统的局限性。更重要的是,提出了许多解决方案策略来解决这些局限性。总的来说,这篇综述为MNP的设计提供了新的想法,以促进其在皮肤组织修复领域的应用,并研究生物医学领域中MNP的未来方向。关键字:基于金属的纳米颗粒,纳米复合材料,伤口敷料,多功能,评论
摘要:与单个有机或无机固体电解质相比,陶瓷中的聚合物复合固体电解质(PIC-CSE)具有重要的优势。在常规的PIC -CSE中,离子传导途径主要局限于陶瓷,而与陶瓷 - 聚合物界面相关的更快路线仍被阻塞。这一挑战与两个关键因素有关:(i)由于陶瓷聚集而建立广泛而不间断的陶瓷 - 聚合物接口的困难; (ii)陶瓷 - 聚合物界面由于其固有的不兼容而对导电没有反应。在这里,我们通过引入与聚合物兼容的离子液体(PCIL)提出策略,以在陶瓷和聚合物基质之间进行介导。这种介导涉及与陶瓷表面上与李 +离子相互作用的极地PCIL以及PCIL和聚合物链的极性成分之间的相互作用。该策略解决了陶瓷聚合问题,从而导致均匀的图片-CSE。同时,它通过建立互穿的通道来激活陶瓷 - 聚合物界面,从而促进Li +离子在整个陶瓷相,陶瓷 - 聚合物界面和中间途径的有效运输。因此,获得的PIC -CSE表现出高离子电导率,特殊的柔韧性和稳健的机械强度。其锂金属袋细胞的高能量密度为424.9 WH kg -1(不包括包装膜)和穿刺安全性。这项工作为使用商业生存能力设计PIC -CSE铺平了道路。■简介包括聚(乙烯基氟化物)(PVDF)和60 wt%Pcil涂层的Li 3 Zr 2 Si 2 PO 12(LZSP)填充剂的PIC - CSE,表现出0.83 ms cm-1的离子电导率,均为0.83 ms cm-cm的li +离子转移数量为0.81,并在0.81中产生了emper the em li + ion tragter n.81和extrential in e米〜300%c的〜300%c.包括聚(乙烯基氟化物)(PVDF)和60 wt%Pcil涂层的Li 3 Zr 2 Si 2 PO 12(LZSP)填充剂的PIC - CSE,表现出0.83 ms cm-1的离子电导率,均为0.83 ms cm-cm的li +离子转移数量为0.81,并在0.81中产生了emper the em li + ion tragter n.81和extrential in e米〜300%c的〜300%c.
氢对于向可持续能源的全球转变至关重要,尤其是在运输和工业等脱碳部门。但是,安全有效的存储,尤其是在液体和高压形式中,仍然是一个挑战。此特刊(用于氢存储的复合材料)探索了解决这些问题的复合材料的创新。我们专注于轻巧的高性能复合材料,例如纤维增强的聚合物,石墨烯增强的金属基质复合材料以及用于极端条件的混合材料。主题包括提高氢气兼容性,减少封闭性以及最大程度地减少长期耐用性的渗透性。可持续解决方案(例如回收材料和节能制造)将被列出,以及计算建模和高级测试以优化性能。在氢气航空,太空勘探和燃油电池车辆中的应用。本期特刊桥梁学术研究和工业应用,推进氢的存储。我们邀请研究人员和行业专家的贡献,以帮助塑造氢的未来。