博士Prasenjit Saikia 博士阿吉特·辛格博士Biswajit Saha 博士P. Yuvaraj 先生帕萨·马宗德博士Hridoy Jyoti Mahanta 博士Pankaj Bharali 博士Tridip Phukan 博士Romi Wahengbam 博士Saikat Haldar 博士奥雅纳罗伊博士百夏凛空博士Atul Ashok More 博士Leon Raj 博士Pravin G. Ingole 博士吉滕德拉·辛格·维尔马博士萨钦吉德先生Dhanjit Das 博士Jyoti Kumar Doley 博士Biswajit Gogoi 博士Debasis D. Mohanty 博士Hemanta Sankar Dutta 博士Jayashi Phukan 博士桑迪普·戴伊先生Rama Shankar Sharma先生JL Khongsai 先生Vaskar Rajkhowa先生Praveen Mohan Verma 先生希玛塔·萨基亚
描述此研究生级课程的重点是机器学习与计算生物学之间的令人兴奋的交集。我们将涵盖现代机器学习技术,包括受监督和无监督的学习,特征选择,概率建模,图形模型,深度学习等。学生将学习这些方法的基本原则,基本的数学和实施细节。通过阅读和批评发表的研究论文,学生将学习机器学习方法在基因组学,单细胞分析,结构生物学和系统生物学中的各种生物学问题上的应用。学生还将通过深入的编程作业使用Pytorch学习使用Pytorch来实施深度学习模型。在最终项目中,学生将通过以生物学问题探索这些概念来应用他们所学的知识,以充满热情。
○ Experience with web development (HTML, CSS, Javascript, React, Vue, Svelte, three.js, d3.js, leaflet, mapbox) ○ Experience with data analysis (Python, pandas, numpy, scikit-learn, SQL) ○ Experience with GIS tools (QGIS, ArcGIS, ArcMap, Leaflet, or MapBox) ○ Experience with command line interface and用于文件操作的脚本工具●具有灵活和独立工作以及指导的验证能力●较强的书面和口语交流技巧;能够记录对细节的关注并纳入关键反馈的能力●展示了研究技能和经验在跨学科团队上合作的经验●通过暴露于敏感/图形内容的学习最佳实践的兴趣●开放的探索,使用和学习新方法,框架和工具和工具●熟悉设计,访问和访问权限
149. QUINZI Matteo (In Pers.) 洛桑联邦理工学院 (EPFL) 材料理论与模拟 (THEOS) 和国家新型材料计算设计与发现中心 (MARVEL)
药物开发需要时间,而且通常无法满足当今医疗保健的需求。这主要是因为将新药推向市场需要很长时间、从头药物开发的成本惊人以及开发过程中的高流失率 ( 1 )。目前对药物开发的估计表明,将新化学实体 (NCE) 开发成实际药物需要超过 12 年的时间和超过 1 亿美元 ( 2 )。即使投入了如此多的资源,也只有不到 2% 的 NCE 能够开发成药物(98% 的流失)。药物开发失败的主要原因是缺乏安全性和有效性 ( 3 )。在进行临床前研究以确定可行性之后,NCE 必须通过严格的 I 期和 II 期试验,才能在临床环境中建立良好的毒理学和药理学特征。少数通过 I 期和 II 期临床试验审查的候选药物将进入 III 期试验,以验证其在大量处于特定疾病不同阶段和合并症的患者中的临床疗效。减轻围绕新药发现和开发的不确定性,并简化临床试验流程是肿瘤学的必需品,因为癌症仍然是全球主要的公共卫生问题。一种可能的解决方案是
1. 量子力学 1.1. 斯特恩·格拉赫 1.2. 马赫-曾德干涉仪 1.3. 量子力学的假设 1.4. 薛定谔方程 1.5. X、P 交换子和海森堡原理 1.6. EV 炸弹 2. 量子计算 2.1. 单量子比特系统 2.1.1. 什么是量子比特 2.1.2. 叠加 2.1.3. 布雷克特符号和极坐标形式 2.1.3.1. 状态向量形式 2.1.3.2. 概率幅 (玻恩规则) [附证明] 2.1.4. 布洛赫球和二维平面 2.2. 测量 I: 2.2.1. 测量假设 - 测量时状态崩溃 2.2.2. 统计测量 2.2.2.1 QC 作为概率分布 2.2.2.2. 来自采样的概率 2.3. 单量子比特门 2.3.1. 旋转-计算-旋转 2.3.2. 幺正门计算 2.3.3. 泡利旋转的普遍性 2.4. 多量子比特系统 I: 2.4.1. 通过张量积实现多量子比特叠加。 2.4.2. 多量子比特门 2.4.2.1. 本机(CNOT) 2.4.2.2. 单量子比特门组合 2.4.2.3. 泡利 + CNOT 普遍性 2.4.3. 德意志-琼扎实验 2.4.4. 无克隆定理 2.5. 纠缠 2.5.1. 贝尔态 2.5.2. 密度矩阵 2.5.3. 混合态 2.5.4.量子隐形传态 2.6. 测量 II: 2.6.1. 量子算子 2.6.2. 射影测量
人工智能决策支持系统始终是一个流行的话题,在复杂环境中不确定性下运行时,为人提供了优化的决策建议。我们讨论的特定重点是比较投资领域中人工智能决策支持系统的不同方法 - 投资决策的目的是选择满足投资者目标的最佳投资组合,或者换句话说,以最大限度地在投资者给出的限制下获得投资回报。在本研究中,我们应用了几种人工智能系统,例如影响图(贝叶斯网络的一种特殊类型),决策树和神经网络,以获取实验比较分析,以帮助用户智能选择最佳的投资组合。1。引言与许多其他领域一样,投资领域是一个动态变化,随机和不可预测的环境。以股票市场为例;投资组合经理或个人投资者可以选择超过两千股股票。这提出了过滤所有这些股票以找到值得投资的问题。也有大量的信息在某种程度上影响市场。对于这些问题,人工智能决策支持系统始终是解决方案。决策支持系统为投资者提供了在时间限制下提供最佳决策支持。为此,我们使用影响图,决策树和神经网络来咨询用户建立自己的非常成功的投资组合。纸张的结构如下。在第2节中,我们介绍了一些有关投资组合管理的投资决策结构的相关作品。在第3和第4节中,我们描述了影响图,决策树和神经网络的框架。在第5节中,我们指定了我们的实验设置。在第6节中,我们显示我们的
成功候选人将开发并应用基于物理的计算方法来模拟在皮层内部(局部场电位;LFP)和外部(EEG、MEG)测量的电和磁脑信号。有关这种生物物理建模方法的评论,请参阅 Einevoll 等人的《自然神经科学评论》,2013 年。在 COBRA 中,这项建模工作将与在 UiO 生物科学系 Marianne Fyhn 实验室进行的小鼠视觉皮层内部实验记录进行比较。因此,该项目还涉及开发小鼠视觉皮层网络模型。
研究生物提供了对人类生物学和疾病的宝贵见解,是功能实验,疾病建模和药物测试的基本工具。但是,人类和研究生物之间的进化差异阻碍了跨物种的有效知识转移。在这里,我们回顾了用于计算跨物种知识的最新方法,主要关注使用转录组数据和/或分子网络的方法。我们介绍了“ agnology”一词,以描述分子成分的功能等效性,而不论进化起源如何,因为在整合数据驱动的模型中,进化起源的作用可能不清楚。我们的评论介绍了跨物种的信息和知识转移的四个关键领域:(1)转移疾病和基因注释知识,(2)识别
