a) 背景信息 ................................................................................................................................................................ 52 b) 专家评论与讨论 ................................................................................................................................................ 57 一、合理的军事指挥官标准 ................................................................................................................................ 57 二、背景因素 ............................................................................................................................................................. 60 三、过度性评估 ............................................................................................................................................................. 62
摘要 - 在大规模数据集上进行训练的Vision语言模型(VLMS)在各种视觉识别任务中表现出令人印象深刻的性能。这一进步为某些以自我为中心的任务,零射击以自我为中心的行动识别(ZS-EAR)的表现为著名的表现铺平了道路,这需要VLMS零射击,以识别从更现实的人类环境相互作用中富含第一人称视频的动作。通常,VLM将ZS-EAR作为全球视频文本匹配任务处理,这通常会导致视觉和语言知识的次优比对。我们提出了一种使用VLM的Zs-Ear的精致方法,强调了精细元素概念 - 描述对准,该对齐利用了以Egintric视频中丰富的语义和上下文细节来利用。在这项工作中,我们引入了一个直接但有效的VLM框架,即aka gpt4ego,旨在增强视觉和语言之间的概念和描述的细粒度对齐。具体来说,我们首先提出了一个新的面向自我的文本提示(EGOTP♠)方案,该方案通过将单词级别的类名与良好设计的链条链接的链中的文本提示提示,通过将单词级别的类名为句子级别的上下文描述来有效提示与动作相关的文本上下文语义。此外,我们设计了一种新的面向自我的视觉解析(EGOVP♣)策略,该策略通过在SAM的帮助下将全球级别的图像改进到部分级别的上下文概念来学习与动作相关的视觉 - 上下文语义。广泛的实验证明了GPT4EGO在三个大规模的以egintric视频基准上的表现明显优于现有的VLMS,即,Epic- Kitchens-100(33.2%↑+9。4),EGTEA(39.6%↑+5。 6)。4),EGTEA(39.6%↑+5。6)。5)和Cha-Radesego(31.5%↑+2。此外,从新颖的细粒概念和描述对齐的新机制中受益,GPT4EGO可以通过不断发展的预培训的基础模型的发展来可持续发展。我们希望这项工作可以鼓励以自我为中心的社区对预训练的视觉模型进行更多调查。
摘要 — 将神经生理学的先验知识整合到神经网络架构中可提高情绪解码的性能。虽然许多技术都强调学习空间和短期时间模式,但对捕捉与情绪认知过程相关的重要长期背景信息的重视程度有限。为了解决这一差异,我们引入了一种称为情绪变换器 (EmT) 的新型变换器模型。EmT 旨在在广义跨受试者脑电图情绪分类和回归任务中表现出色。在 EmT 中,脑电图信号被转换成时间图格式,使用时间图构造模块 (TGC) 创建一系列脑电图特征图。然后提出了一种新颖的残差多视图金字塔 GCN 模块 (RMPG) 来学习该系列中每个脑电图特征图的动态图表示,并将每个图的学习到的表示融合成一个标记。此外,我们设计了一个时间上下文变换器模块 (TCT),它有两种类型的标记混合器来学习时间上下文信息。最后,任务特定的输出模块 (TSO) 生成所需的输出。在四个公开数据集上的实验表明,EmT 在 EEG 情绪分类和回归任务中都取得了比基线方法更高的结果。代码可在 https://github.com/yi-ding-cs/EmT 上找到
量子理论的预测重新呈现了广义的非秘密解释。除了这一事实的基本关系之外,量子理论在多大程度上违反了非智能限制的限制在通信和信息过程中可用的量子优势。在这项工作的第一个部分中,我们通过准备和测量实验正式定义上下文情景,以及包含量子上下文行为集的一般上下文行为的多人。这个框架使我们恢复了这些scenarios中的几种量子行为的属性,包括上下文性场景和相关的非上下文性不平等,这需要违反单个量子准备和误导程序,以使其成为混合状态和UNSHARP测量。有了适当的框架,我们制定了新型的半决赛编程松弛,以界定这些量子式行为。最重要的是,在上下文中,我们提出了一种新型的基于单一的单一统一性的放松技术。,我们通过在违反几种非上下文性不平等的量子上获得紧密的上限来证明这些放松的效果,并确定新颖的最大上下文量子策略。为了进一步说明这些放松的变化,我们演示了
据世界卫生组织 (WHO) 最近报告,智能手机、多媒体系统或广告牌等智能设备的大量使用导致驾驶时注意力分散,并因此导致致命事故。基于脑电图的脑机接口 (BCI) 已被提议作为一种有前途的分心检测方法。然而,现有的解决方案并不适合驾驶场景。它们没有考虑互补数据源(例如上下文数据),也没有保证组件之间实时通信的真实场景。这项工作提出了一种使用 BCI 和逼真的驾驶模拟器检测分心的自动框架。该框架采用不同的监督机器学习 (ML) 模型,使用脑电图 (EEG) 和汽车传感器收集的情境驾驶数据(例如越线或物体检测)对不同类型的分心进行分类。已经使用无分心的驾驶场景和类似的场景对该框架进行了评估,其中对十个受试者产生了视觉和认知分心。所提出的框架使用 EEG 实现了 83.9% 的二分类 𝐹 1 得分,使用 EEG 实现了 73% 的多分类模型,通过将情境驱动纳入训练数据集,二分类提高了 7%,多分类提高了 8%。最后,神经生理学研究证实了结果,结果显示选择性注意和多任务处理中的电压明显更高。
所有的“机器视觉数据集比较”,K。Gauen,R。Dailey,J。Laiman,Y。Zi,N。Asokan,Y.H。lu,G.K。 Thiruvathual,M.L。Shyu,S.-C。陈。- 本文提出,近年来技术最大的改进之一是使用机器学习来处理视觉数据的快速进步。在有助于这种发展的所有因素中,带有标签的数据集扮演着至关重要的角色。本文比较了用于机器学习的不同视觉数据集和框架。比较既是定性的,又是定量性的,并且在大小,位置和上下文信息方面研究对象检测标签。本文还提出了一种新的方法,它使用实时,地理标签的视觉数据创建数据集,从而大大改善了数据的上下文信息[1]。
对此象限进行评估的XDR解决方案提供商的特点是它们提供了一个平台,该平台可以集成,关联和上下文将数据和警报从多个威胁预防,检测和响应组件中提出。XDR是一项包括多点解决方案的云技术。它使用高级分析来将来自多个来源(包括弱个人信号)的警报相关联,以实现准确的检测。XDR解决方案合并和集成了多个产品,为工作区,网络和工作负载提供了全面的安全性。通常,XDR解决方案旨在极大地提高对整个企业的威胁的可见性和上下文理解。这些解决方案的特征包括遥测和上下文数据分析以进行检测和响应。XDR解决方案包含多种产品集成到单个玻璃窗格中,以进行复杂的观察,检测和响应功能。他们的高自动化成熟度和上下文分析
摘要:Grossberg的自适应共振理论的两个通用功能原理解密了所有生物学习和自适应智能的脑法规。低水平表示,这些规则整合了上下文配置的高级长期痕迹。这些普遍的编码原理导致在所有生物物种(从Aplysiae到灵长类动物)中建立了持久的脑签名。根据原始代码和大脑上下文调制的一些相关的经验发现,在本概念论文中重新审视了它们,突出了Grossberg的开拓性洞察力的潜力和开发理论解决方案的潜力,用于发育和认知机器人的智能解决方案。
摘要:Grossberg的自适应共振理论的两个通用功能原理解密了所有生物学习和自适应智能的脑法规。低水平表示,这些规则整合了上下文配置的高级长期痕迹。这些普遍的编码原理导致在所有生物物种(从Aplysiae到灵长类动物)中建立了持久的脑签名。根据原始代码和大脑上下文调制的一些相关的经验发现,在本概念论文中重新审视了它们,突出了Grossberg的开拓性洞察力的潜力和开发理论解决方案的潜力,用于发育和认知机器人的智能解决方案。
使用了不同可能的回归器的子集:(1)从初始条件来看; (2)扩展上下文条件(见图1)。为了探索整个组的条件和上下文分析的主要影响,我们采用了voxel-type I误差阈值的α= 0.03,并使用群集范围方法来校正多个比较[23]。超过校正的集群I型误差阈值α= 0.006(k> 1055素体,在空间范围内等效到15个原始未恢复的体素)进行进一步分析,以确定类别特异性主要效应的方向性并测试相互作用。鉴于群集范围方法不如假发现率(FDR)或家庭明智误差(FWE)那么严格,因此我们选择了α= 0.03。使用这些1055素素二级随机