1名学生,2名学生,3名学生,4位助理教授,1,2,3,4电气工程系1,2,3,4 Gramin技术与管理校园,NANDED,印度,摘要:由于需求的增长,电动汽车(EVS)日益严重。 在EVS中,需要进行广泛的研究,以替代石油和其他燃料的替代品。 与燃烧引擎车相比,电动汽车在提供舒适性和效率方面取得了成功,但电动汽车仍然需要注意电动汽车的充电。 电动汽车的充电时间更长,每个制造公司都有不同的电池布置,因此充电器的评级不同。 我们提出了设计通用系统,用于使用脉冲宽度调制,以用于电池充电。 我们正在对“ PWM控制的通用电动汽车电池充电器”开发MATLAB模拟。 提议的系统将足够聪明,可以识别电动电动电气电池的电压额定值。 识别电池PWM受控电池充电器后,将在最短时间内为电动汽车电池充电。 该系统将在电动汽车研究领域发挥重要作用。 索引项 - MATLAB模拟。 引言电动汽车(EV)的基础设施随着电动汽车市场的增长而变得重要。 两个主流电荷连接器协议是充电DE移动(Chademo)和联合充电系统(CCS),它们具有不同的电池电压范围。 通用充电器的 DC/DC转换器需要在整个输出电压范围内实现高效率。1名学生,2名学生,3名学生,4位助理教授,1,2,3,4电气工程系1,2,3,4 Gramin技术与管理校园,NANDED,印度,摘要:由于需求的增长,电动汽车(EVS)日益严重。在EVS中,需要进行广泛的研究,以替代石油和其他燃料的替代品。电动汽车在提供舒适性和效率方面取得了成功,但电动汽车仍然需要注意电动汽车的充电。电动汽车的充电时间更长,每个制造公司都有不同的电池布置,因此充电器的评级不同。我们提出了设计通用系统,用于使用脉冲宽度调制,以用于电池充电。我们正在对“ PWM控制的通用电动汽车电池充电器”开发MATLAB模拟。提议的系统将足够聪明,可以识别电动电动电气电池的电压额定值。识别电池PWM受控电池充电器后,将在最短时间内为电动汽车电池充电。该系统将在电动汽车研究领域发挥重要作用。索引项 - MATLAB模拟。引言电动汽车(EV)的基础设施随着电动汽车市场的增长而变得重要。两个主流电荷连接器协议是充电DE移动(Chademo)和联合充电系统(CCS),它们具有不同的电池电压范围。DC/DC转换器需要在整个输出电压范围内实现高效率。通常,Chademo覆盖了最高500 V的相对低压电池,CCS覆盖了最高950 V的高压电池。要与所有EVS兼容,以适应Chademo或CCS,需要开发一个覆盖电池电压极广泛的通用EV充电器。src由于其较大的磁性电感而导致其循环损失较小,导致在谐振频率下的效率较高,但是,SRC仅提供降低电压转换率,而LLC转换器达到了启动频率的增益,而当切换频率变小时,则在较小的情况下,由于循环的循环量是在交付的方面,并且在ersonant consection中存储了这些方面,并且在这些方面取得了循环范围,而这些方面是在这些方面取得的范围,而这些方面是在这些方面取得的范围,而这些循环均可在这些方面取出,而这些均可在这些方面取得了进出,而这些转换率是在这些方面的转换,则可以在这些方面取得了进出,而这些转换率是在这些方面的转换,而这些均可依次,而循环均可置换。请注意,SRC的循环电流较小,但增益范围也有限。因此,如果在SRC中可以实现更广泛的增益,则有可能同时具有较小的循环电流和广泛的增益。由于这些原因,已经有几种方法可以为SRC提供更广泛的收益。第一种方法是脉冲宽度调制(PWM)调整的谐振转换器。在这种方法中,PWM信号引起的增强周期会增强谐振电流,从而使谐振转换器可以实现增益。这样做,可以通过较窄的开关频率范围覆盖各种电压转换比。可以通过较窄的开关频率范围降低磁性组件的尺寸。唯一的问题是当需要高增益时,共振电流的峰值很大。第二种方法是一种拓扑化技术。谐振电流的大峰会引起大的RMS电流,并导致增强开关损失。在这种方法中,控制某个开关组件以重新配置逆变器或整流器结构。例如,通过完全打开开关,全桥逆变器也可以用作半桥逆变器。
此参考设计是一款 28 V 输出、5 A 同步降压转换器,适用于输入范围为 50 V 至 150 V 的太空应用。TPS7H5001-SP PWM 控制器控制功率级。INA901-SP 感应电感电流并向控制器提供电流反馈,从而实现平均电流模式控制和输出短路保护。如果不需要这些功能,可以移除 INA901-SP,并使用电压模式控制运行 TPS7H5001-SP。TPS7H5001-SP 的可调死区时间允许优化开关 MOSFET 的时序,从而在 100 V 输入下实现超过 94% 的效率,在 50 V 输入下实现超过 96% 的效率。包含一个自偏置电路,可直接从输出为控制电路供电。如果提供外部 12 V 偏置,则可以移除自偏置电路,从而提高效率。
摘要 - 本文介绍了用于电动汽车电池充电应用的单端初级电感转换器 (SEPIC) 的设计和仿真。SEPIC 转换器是一种 DC-DC 转换器,旨在提供稳定的输出电压,同时适应各种输入电压。SEPIC 转换器以其高效率和高可靠性而闻名,可以将输出电压调节为高于或低于输入电压。DC-DC 转换器因其低输出电压纹波和高效率而特别吸引研究人员,使其成为需要低噪声和高功率密度的应用的理想选择。DC-DC 转换器性能和可靠性的不断进步对于满足现代技术日益增长的需求至关重要。SEPIC 转换器与降压-升压转换器有相似之处,结合了降压和升压功能,具有输入和输出电压极性相同、效率高以及输出侧和输入侧之间电容隔离等优点。本文使用 MATLAB 软件对开环和闭环配置中的 SEPIC 转换器进行了仿真,并进行了介绍。
摘要:本文介绍了一种用于电网连接应用的三相多电平多输入功率转换器拓扑。它包含一个三相变压器,该变压器在初级侧以开端绕组配置运行。因此,初级绕组的一侧由三相 N 电平中性点钳位逆变器供电,另一侧由辅助两电平逆变器供电。所提方法的一个关键特点是 N 电平逆变器能够独立管理 N - 1 个输入电源,从而避免了在混合多源系统中需要额外的直流/直流功率转换器。此外,它还可以管理连接到两电平逆变器直流总线的储能系统。 N 级逆变器以低开关频率运行,可配备导通压降极低的绝缘栅双极晶体管 (IGBT) 器件,而辅助逆变器则根据传统的高频两级脉冲宽度调制 (PWM) 技术以低压运行,可配备导通电阻极低的金属氧化物半导体场效应晶体管 (MOSFET) 器件。模拟和实验结果证实了所提方法的有效性及其在电网电流谐波含量和整体效率方面的良好性能。
由于常规能源(化石燃料)的环境影响,可再生能源资源(例如太阳能和燃料电池)引起了人们的关注。电动汽车在群众中也在环境友好和长期成本较低的情况下越来越受欢迎。DC -DC电力电子转换器是太阳能电器和电动汽车中必不可少的项目。在此类应用中,双向DC -DC转换器用于实现两种类型的目的:在燃料电池为完全电动汽车供电的情况下,以及在高压电池收取燃料电池时,燃料电池为燃料电池提供动力,就像高增益级别转换器一样。在此研究项目中,我们将重点放在创建一个能够从输入到其输出的电压下降的目标转换器。我们将介绍MATLAB R2020A/SIMULINK中开放环转换器的设计和模拟,以及各种参数(例如固定占空比,效率,输出电压和功率)等各种参数的计算。开放循环的基础知识:开路提供了一个固定的占空比,以获得理论上计算的输出电压。最终,没有从输出到输入的反馈,反对具有一个或多个反馈回路的闭环。buck转换器是DC -DC电源转换器,可以通过降低端点处的电压来起作用。该电路至少包含两个半导体(MOSFET/二极管),两个储能元件(电感器/电容器)和一个负载(电阻)。电容器的目的是在负载电阻器上保持相对稳定的输出。
摘要:光伏 (PV) 发电机是现代电网的重要组成部分。大多数 PV 系统利用各种最大功率点跟踪 (MPPT) 算法向公用设施注入最大可用功率。然而,在阳光明媚的日子里,持续获得最大功率会导致基于电力电子的 DC-DC 转换器的热应力增加和可靠性降低。本文提出了一种 DC-DC 转换器的热模型,该模型根据热传感器感测到的功率损耗和环境温度来评估累积温度。建议采用热控制策略将转换器主要组件的温度保持在允许的范围内。热控制包括两个阶段:初级阶段,调整 IGBT 开关的开关频率以降低累积温度;次级阶段,调整基于电流的 MPPT 算法以降低通过主开关的最大电流。这种方法旨在延长所用 DC-DC 转换器的使用寿命并降低其运营成本。此外,通过频率响应的稳定性分析确定开关频率变化的允许范围,使用闭环系统的波特图来评估频率响应的稳定性。所提出的热控制是在 MATLAB/Simulink 环境中实现的。相关结果证明了所提出的控制在将温度保持在可接受的范围内并从而提高系统可靠性方面的有效性。
印度海得拉巴 摘要:集成功率因数校正的 LLC 谐振转换器在 AC-DC 转换器中越来越常见。然而,单相设置在变化的线路和负载条件下有效控制直流总线电容器电压时经常面临挑战。本研究中的新方法引入了一种独特的单相 AC-DC LLC 结构,该结构利用多级拓扑来管理此问题,从而减少了开关设备的数量。创新的三级逆变器设计确保零电压切换,从而降低循环电流、开关电压、纹波含量和损耗。通过无桥整流器系统的变压器进一步优化效率,同时通过采用源侧绕组进行不连续电流控制来实现功率因数校正,几乎实现了单位功率因数。通过实施可变开关频率控制来调节转换器输出电压并利用脉冲宽度调制来控制多级波形,该系统有效地将直流总线电压保持在各种线路和负载波动的窄范围内。索引术语 - LLC 谐振转换器、AC-DC 转换器、软开关、PFC、DC 总线。
本应用说明介绍了一种设备,该设备最初设计用于解决在仅有正电源可用时需要负电源的特定问题。这种情况非常常见,例如,在使用动态 RAM 的系统中,三电源设备需要大约 -5V 的低电流体偏置电源。在具有大量数字逻辑(+5V)但包含使用 A/O 转换器(例如 ICL7107 或 ICL7109 和/或运算放大器和比较器)的小型模拟部分的系统中,也需要负电源电压,这些模拟部分以接地参考信号为基准。在所有这些情况下,电流要求和调节都不是很苛刻,但尽管如此,产生这样的 -5V 电源通常成本高昂且效率低下。通常,需要大量分立和集成电路元件来将公共 +5V 线转换为负极线,或向主电源、背板布线等添加额外输出。
简介在2017年早些时候,我们在Uthaim线程中讨论了当前传送带放大器如何也可以用作IV转换器[1]。Uthaim利用了东芝JFET输入对,偏向于8mA。这些JFET当然很难获得。自然的问题是,我们如何用BJT替换JFET。偶然地遇到了Toshiyuki Beppu [2,2a]的1999年跨阻力IV电路。虽然这本质上是一个OPAMP IV电路,但输入阶段使用电流镜的原理显示了互补BJT对的简单偏置电路。也有John Broskie [2B]在2012年发表的类似巡回赛。而不是根据BEPPU使用第二电流放大阶段,然后用NFB关闭环路,而是只能将Uthaim的其余部分用于IV转换,包括输出缓冲区。当然,IV转换器不需要像Uthaim中的强大输出缓冲区。一个简单的A类BJT发射极追随者足以驱动下游阶段的典型载荷。整个电路由不超过3对互补电流镜,还有10个电阻组成。在Internet上进行了一些进一步的搜索,揭示了与上述[3,4]的非常相似的电路。实际上,我们在2011年也发表了类似的内容[5]。正如Jan Didden所说,您可以将其视为开放循环和A类简化的AD844(或平行的8倍)。那么,为什么现在要恢复呢?当时,JFET含量丰富,几乎没有HFE的单片双BJT可供选择(2SC3381BL / 2SA1349BL)。今天的情况是完全逆转的,并且像Nexen这样的SMD组件建立小型IV模块的想法相当吸引人[6]。Rutgers的确报告了相对较差(模拟)的性能,即使在低输出水平为0.25V的情况下,H3也为0.04%。尽管他选择的晶体管具有很低的电容,但HFE也很低(〜80)。通过选择高HFE(〜400)的Toshiba SMD低噪声双晶体管,我们的模拟