摘要:高科技制造业中使用的逆变器、交流接触器等设备对电压暂降十分敏感,电压暂降可能造成设备故障、生产中断、数据丢失、敏感设备损坏、能源供应不稳定等。一次短路故障可能触发多个电能质量监测装置记录电压暂降波形,电压暂降数据冗余问题严重影响数据应用。因此识别电压暂降源对于科学合理评估区域电网电压暂降严重程度具有重要意义。因此本文提出了一种基于DBSCAN算法的电压暂降源识别算法。通过采用合适的特征工程,选取三维聚类特征,再通过迭代方法选取合适的聚类算法参数进行聚类,最后通过6个聚类评价指标评估算法效果。利用某省电力公司提供的数据在jupyter notebook编程平台上进行实验,最终结果证明了所提算法的有效性。关键词:电压暂降 聚类 DBSCAN 电压暂降同源性检测 1.引言 电压暂降造成微电子、智能控制等精密加工行业的生产中断,给用户带来巨大的经济损失,成为投诉最多的电能质量问题[1],[2]。一次短路故障可能触发多个电能质量监测装置记录电压暂降波形。电压暂降数据的冗余严重影响数据应用[3],[4],并可能导致对区域电网电压暂降严重程度的高估[5]。同时,对同一电压暂降源引起的多条数据进行重复分析会增加计算强度和复杂度。将多次电压暂降事件识别为同一电压暂降源是电能质量监测领域亟待解决的问题。识别出同一电压暂降源可以减少电网电能质量监测系统的数据冗余,避免对区域电能质量水平做出高估。它是明确区域电网电能质量水平的必要前提,对于科学合理评估区域电网电压暂降严重程度具有重要意义。电压暂降源识别就是对短时间内监测到的多个电压暂降数据进行分类,将同一电压暂降源引发的电压暂降监测数据归为一类。近年来,国内外对电压暂降源进行了大量研究,现有的研究主要包括特征提取与选择[6]、数据挖掘与机器学习算法[7],[8], [9], 算法融合与集成 [10]。综上所述, 本文提出了一种基于 DBSCAN 算法的同源性识别方法, 并使用某省电力公司提供的 10049 条临时掉电数据进行了聚类实验。最后对聚类结果进行了 6 个聚类评价指标的评估, 证明了该方法的准确性和有效性
摘要:在本文中,我们提出了一种新的方法,用于在农业中农作物行之间的自主机器人导航。通过将2D光检测和范围(LIDAR)数据投影到机器人的运动方向上,以执行具有噪声(DBSCAN)的应用程序的一维空间聚类来实现。通过将DBSCAN的虚拟地标与机器人的位置相结合,从粒子过滤器中更新了映射和定位(MAL)。此方法映射的结果并在一次扫描中同时估算机器人的位置。每个机器人的位置取决于当前扫描和以前的扫描的LIDAR数据信息。数据关联是通过将许多连续扫描和卡尔曼过滤器组合在一起的数据来实现全局路径。通过组合本地位置创建的全局轨迹允许机器人实时自动导航,而无需经历从裁剪领域收集所有数据的先前阶段。本文还使用不同的参数进行FIR滤波器校正,以增强所提出的方法的有效性。
分类:定义、数据概括、分析特性、属性相关性分析、挖掘类别比较、大型数据库中的统计测量、基于统计的算法、基于距离的算法、基于决策树的算法。聚类:简介、相似性和距离测量、分层和分区算法。分层聚类 - CURE 和 Chameleon。基于密度的方法 - DBSCAN、OPTICS。基于网格的方法 - STING、CLIQUE。基于模型的方法 - 统计方法、关联规则:简介、大项目集、基本算法、并行和分布式算法、神经网络方法。
Introduction to ML Idea of supervised, unsupervised, semi-supervised, reinforcement learning Linear regression Idea of model complexity, generalization, bias-variance trade-off, regularization Cross validation, VC dimension Supervised classification algorithms: K nearest neighbor, LDA, Decision Tree, SVM and kernel methods, Neural Network, Naive Bayes', Gaussian判别分析,集合方法等有关概率学习模型的更多更多信息:使用MLE,MAP,GMM,EM算法估算参数无监督的学习:群集和内核密度估计,K-Means,dbscan,parzen窗口技术等。使用PCA和内核PCA降低维度强化学习的介绍深度学习和卷积网络的简介,经常性网络
本报告介绍了行业集群的概念,并探讨了空间机器学习方法的应用,以检查群集在大湖区周围的分布。该研究重点介绍了六个中西部国家:伊利诺伊州,印第安纳州,密歇根州,明尼苏达州,俄亥俄州和威斯康星州。行业集群被定义为共享资源并促进创新,推动区域经济增长的本地和区域集中。该方法涉及使用空间分析工具来执行基于密度的群集分析。特定的聚类算法包括DBSCAN,HDBSCAN,光学和自然断裂(Jenks)分类,用于可视化簇的位置就业浓度。结果显示了空间就业浓度,揭示了城市和农村地区内的专业化模式,聚类和分散。
摘要 - 随着自动驾驶的快速进步,为其感应系统配备更全面的3D感知变得至关重要。但是,广泛探索的任务(例如3D检测或点云语义分段)重点是解析对象(例如汽车和行人)或场景(例如树木和建筑物)。在这项工作中,我们建议解决基于激光雷达的全景分段的具有挑战性的任务,该任务旨在以统一的方式解析对象和场景。特别是我们提出了动态转移网络(DS-NET),该网络是Point Cloud Realm中有效的全景分割框架。ds-net具有用于复杂LIDAR点云分布的动态移位模块。我们观察到,BFS或DBSCAN(例如BFS或DBSCAN)的常用聚类算法无法处理具有非均匀点云分布和不同实例大小的复杂自主驾驶场景。因此,我们提出了一个有效的可学习聚类模块,动态转换,该模块可以随时适应内核功能。为了进一步探索时间信息,我们将单扫描处理框架扩展到其时间版本,即4D-DS-NET,以进行4D Panoptic分割的任务,其中应为多个框架提供相同的ID ID预测。我们建议以更统一的方式求解4D Panoptic分割,而不是将跟踪模块附加到DS-NET上。该代码可在https://github.com/hongfz16/ds-net上公开获取。具体而言,4D-DS-NET首先通过对齐连续的LiDAR扫描来构造4D数据量,然后在其上执行时间统一的实例聚类以获得最终结果。进行了两个大规模自动驾驶激光雷达数据集(Semantickitti和Panoptic Nuscenes)的广泛实验,以证明所提出的溶液的有效性和出色性能。
支持的 ML 算法包括:1. 监督/分类 - AdaBoost、卷积神经网络 (CNN)、决策树、广义线性模型 (GLM)、K-最近邻 (KNN)、逻辑回归、多层感知器 (MLP)、朴素贝叶斯、随机森林、循环神经网络 (RNN)、支持向量回归 (SVM)、XGBoost。2. 监督/回归 - AdaBoost、卷积神经网络 (CNN)、决策树、广义线性模型 (GLM)、K-最近邻 (KNN)、线性回归、多层感知器 (MLP)、朴素贝叶斯、随机森林、循环神经网络 (RNN)、支持向量回归 (SVM)、XGBoost。 3. 时间序列/预测 - 自回归综合移动平均线 (ARIMA)、长短期记忆 (LSTM)、Prophet、Seq2Seq、时间卷积网络 (TCN)、NBeats、Autoformer、TCMF。4. 时间序列/异常 - 自动编码器、DBSCAN、椭圆包络、孤立森林、K-Means、一类 SVM。
摘要。在3D数据上解决人体部位的一种常见方法涉及使用2D分割网络和3D投影。遵循这种方法,可以在最终的3D分割输出中引入几个错误,例如分割错误和再投影错误。当考虑了非常小的身体部位(例如手)时,此类错误甚至更为重要。在本文中,我们提出了一种新算法,旨在减少此类错误并改善人体部位的3D序列。该算法使用DBSCAN算法检测噪声点和错误的簇,并更改利用簇的形状和位置的点的标签。我们评估了3DPEOPLE合成数据集和真实数据集上提出的算法,突出了它如何可以大大改善小身体(如手)的3D分割。使用我们的算法,我们在合成数据集上实现了多达4.68%的IOU,在实际情况下最多可占IOU的2.30%。
描述了K均值,层次结合和DBSCAN聚类方法的实现功能数据,该方法允许共同对齐和聚类曲线。它支持在一维域上定义的功能数据,但可能在多元代码中进行评估。它支持在数组中定义的功能数据,也支持通过“ FD”和“ Fundata”类的功能数据,分别用于“ FDA”和“ Fundata”软件包中定义的功能数据。当前,它支持在实际线路上定义的功能数据的移位,扩张和仿射扭曲功能,并使用SRVF框架来处理在特定间隔上定义的功能数据的保存边界扭曲。K-Means算法的主要参考:Sangalli L.M.,Secchi P.,Vantini S.,Vitelli V.(2010)````k-mean for Curve clustering'''。SRVF框架的主要参考:Tucker,J。D.,Wu,W。,&Srivastava,A。(2013)``使用相位和振幅分离的功能数据生成模型''。
气候变化对全球农业生产力和粮食安全构成了重大威胁。气候变化对农作物产量的影响变得越来越明显,尤其是在严重依赖农业生存的发展和低收入国家。这些地区通常缺乏有效适应所需的基础设施,使其特别容易受到与气候相关的破坏的影响。本研究研究了气候变化与农业之间的复杂关系,突出了温度变化,降水模式的变化。这项研究主要侧重于通过应用聚类技术来检查气候变化对农业的影响。具体来说,它旨在探索各种气候和农业因素之间的关系,例如作物产量,经济影响和适应策略。使用无监督的机器学习方法,该研究分析了一个数据集,其中包含温度,降水,二氧化碳排放,灌溉通道,土壤健康指数和适应策略等特征。聚类算法(包括K-均值,DBSCAN和聚集聚类)被采用,将数据分组为不同的集群,从而揭示了不同地区和农业实践如何受到气候变化影响的模式。此外,该研究强调了较高的作物产量与增加的经济利益之间的联系。使用轮廓分数评估每个模型的聚类性能,以测量簇的质量。