气候变化对全球农业生产力和粮食安全构成了重大威胁。气候变化对农作物产量的影响变得越来越明显,尤其是在严重依赖农业生存的发展和低收入国家。这些地区通常缺乏有效适应所需的基础设施,使其特别容易受到与气候相关的破坏的影响。本研究研究了气候变化与农业之间的复杂关系,突出了温度变化,降水模式的变化。这项研究主要侧重于通过应用聚类技术来检查气候变化对农业的影响。具体来说,它旨在探索各种气候和农业因素之间的关系,例如作物产量,经济影响和适应策略。使用无监督的机器学习方法,该研究分析了一个数据集,其中包含温度,降水,二氧化碳排放,灌溉通道,土壤健康指数和适应策略等特征。聚类算法(包括K-均值,DBSCAN和聚集聚类)被采用,将数据分组为不同的集群,从而揭示了不同地区和农业实践如何受到气候变化影响的模式。此外,该研究强调了较高的作物产量与增加的经济利益之间的联系。使用轮廓分数评估每个模型的聚类性能,以测量簇的质量。
主要关键词