Introduction to ML Idea of supervised, unsupervised, semi-supervised, reinforcement learning Linear regression Idea of model complexity, generalization, bias-variance trade-off, regularization Cross validation, VC dimension Supervised classification algorithms: K nearest neighbor, LDA, Decision Tree, SVM and kernel methods, Neural Network, Naive Bayes', Gaussian判别分析,集合方法等有关概率学习模型的更多更多信息:使用MLE,MAP,GMM,EM算法估算参数无监督的学习:群集和内核密度估计,K-Means,dbscan,parzen窗口技术等。使用PCA和内核PCA降低维度强化学习的介绍深度学习和卷积网络的简介,经常性网络