抗代谢药通过干扰细胞增殖所必需的关键代谢途径发挥细胞毒性作用。这些药物在结构上类似于 DNA 和 RNA 合成所需的天然代谢物,允许它们被掺入核酸并破坏正常的细胞功能。通过与内源性底物竞争并抑制关键酶,抗代谢药会破坏 DNA 复制、RNA 转录和蛋白质合成,最终导致细胞死亡。抗代谢药的主要靶点之一是叶酸代谢途径,该途径在核苷酸生物合成和一碳代谢中起重要作用。甲氨蝶呤和培美曲塞等药物作为叶酸类似物,抑制二氢叶酸还原酶 (DHFR) 和胸苷酸合酶 (TS),这是参与叶酸代谢的关键酶。
剂量 - 响应关系是从分子到整个细胞水平的多个尺度上描述生物系统的一般概念。临床上相关的例子是对抗生素的细菌生长反应,该反应通常以剂量 - 反应曲线为特征。剂量 - 反应曲线的形状在抗生素之间差异很大,并且在治疗,药物相互作用和耐药性演化中起关键作用。但是,构成剂量的机制 - 反应曲线在很大程度上不清楚。在这里,我们在大肠杆菌中表明,明显的浅剂量 - 甲甲化抗生素的响应曲线是由负生长介导的反馈回路引起的:甲氧苄啶减慢了生长,从而削弱了这种抗生素的作用。在分子水平上,这种反馈是由药物靶标的二氢叶酸还原酶(Fola/dhfr)的上调引起的。我们表明,这种上调不是对甲氧苄啶的特定响应,而是遵循的普遍趋势线,主要取决于增长率,而与其原因无关。重新布线反馈回路以可预测的方式改变了剂量 - 响应曲线,我们使用细胞资源分配和生长的数学模型来证实这一点。我们的结果表明,生长介导的反馈回路可能会更普遍地塑造药物反应,并且可以利用设计为设计的陷阱,从而可以选择抵抗药物耐药性。
单基因疾病通常是特定基因单点突变的结果,导致非功能蛋白的产生。不同的血液疾病,例如β-丘脑贫血,镰状细胞病,遗传性球细胞增多症,fanconi贫血和血友病A和B,通常是由点突变引起的。基因编辑工具,包括Talens,ZFN或CRISPR/CAS平台,以纠正负责不同疾病的突变。然而,不依赖核酸酶活性的替代分子工具,例如形成三核苷酸及其衍生物(例如肽核酸),也证明了它们在DNA中纠正突变的能力。在这里,我们回顾了修复 - 螺肽反向Hoogsteen发夹(PPRHS)技术,该发夹可以代表该领域内的替代基因编辑工具。修复-PPRHS是由由五甲状腺素桥连接的两个息肉素镜重复序列形成的单链DNA分子,然后在分子的一端进行扩展序列,该序列是与DNA序列同源的,但要修复了DNA序列,但含有修复的DNA序列。PPRH的两个息肉臂由嘌呤之间的分子内反间隔键结合,从而形成了发夹结构。该发夹芯与watson-crick键以序列特异性方式与dsDNA中靶突变相对近乎近距离突变结合,从而产生了刺激重组的三重结构。这项技术已成功地用于修复其内源性基因座中DHFR和APRT基因突变体在哺乳动物细胞中的集合,并且可以适合校正负责血液疾病的突变。
背景 晚期不可切除和/或转移性癌症患者迫切需要治疗。粘蛋白 1 (MUC1) 是一种特征明确的异二聚体糖蛋白,在许多上皮源性肿瘤中过表达,由非共价连接的 N 端 (MUC1-N) 和 C 端 (MUC1-C) 单体组成。MUC1-C 表位选择性地出现在乳腺癌、结直肠癌、卵巢癌、胃癌、肺癌等上皮源性实体瘤中。由于细胞极性的丧失,MUC1-C 也广泛且易于在整个肿瘤组织中表达,这是肿瘤发生的标志之一。 P-MUC1C-ALLO1 是一种针对 MUC1-C 表位的完全同种异体 CAR-T,采用非病毒转座子整合(piggy-Bac ® DNA 递送系统)制造,可产生高度富集的 T 干细胞记忆 (T SCM) 产品。它含有 3 个转基因:基于抗 MUC1-C 人源化 scFv 的 CAR、用于提高产品同质性的 DHFR 药物选择基因和基于 iCasp9 的安全开关基因(可在需要时快速消融 CAR-T)。这些细胞使用 Cas-CLOVER ™ 位点特异性基因编辑系统进行基因编辑,通过敲除 T 细胞受体 β 链 1 基因来消除所有细胞中内源性 T 细胞受体的表达以防止移植物抗宿主 (GvH) 反应,并敲除 b2-微球蛋白基因以消除 MHC I 类的表达,从而减弱宿主抗移植物反应。在小鼠三阴性乳腺癌和卵巢癌模型中观察到 P-MUC1C-ALLO1 的临床前疗效,这为这项首次人体 (FIH) 1 期试验提供了理论依据。方法这是一项 1 期、多中心、开放标签、FIH、3+3 设计,旨在评估 P-MUC1C-ALLO1 对 RECIST 1.1 可测量且对标准治疗有抵抗力/不适合的晚期或转移性上皮源性癌症患者的作用。最多 100 名患者将被纳入 4 个单次和周期性给药组,使用两种不同的淋巴细胞清除 (LD) 方案(环磷酰胺/氟达拉滨 ± 利妥昔单抗)。每个组的计划剂量递增范围为 0.75 至 15 x 10 6 细胞/kg。本研究的主要目标包括确定最大耐受剂量 (MTD)、评估总体安全性和耐受性、初步疗效和疾病反应。探索性终点将包括 MUC1-C 肿瘤表达和与反应的相关性、P-MUC1C-ALLO1 细胞动力学和生物标志物分析,包括 MUC1 相关肿瘤标志物 CA15-3 和 CA27-29 和 CTC。结果迄今为止,已有三名患者接受了 P-MUC1C-ALLO1 治疗(食管腺癌、结直肠腺癌和乳腺癌)。迄今为止,P-MUC1C-ALLO1 治疗耐受性良好,未观察到剂量限制性毒性、CRS 或 GvH 疾病。本研究继续招募受试者,并将提供更新的数据。试验注册 NCT05239143