一个kagome晶格自然具有其电子结构中的Dirac Fermions,Flat Band和Van Hove奇异性。Dirac Fermions编码拓扑结构,平面带偏爱相关现象,例如磁性,而Van Hove的奇异性可以导致对远程多个体型的不稳定性,从而完全可以实现和发现一系列拓扑kagome磁铁,并具有带有exotic特性的超导体。探索kagome材料的最新进展揭示了由于几何,拓扑,自旋和相关性之间的量子相互作用而产生的丰富的新兴现象。在这里,我们回顾了该领域的这些关键发展,从Kagome晶格的基本概念开始,再到Chern和Weyl拓扑磁性的实现,再到各种平坦的多体型相关性,然后再到非常规的电荷密度密度波和超导导性的难题。我们强调了理论思想和实验观察之间的联系,以及kagome磁铁和kagome超导体内的量子相互作用之间的键,以及它们与拓扑绝缘子,拓扑超导体,Weyl Semimetals和高磁性超管制的概念之间的关系。这些发展广泛地桥接了拓扑量子物理学,并将多体物理物质相关联,并在各种散装材料中与拓扑量子问题的前沿相关。
狄拉克和费曼是第一批理解作用量在量子力学中的作用的人。狄拉克的动机源于希望获得一种量子力学公式,其中时间和空间变量以类似的方式处理。让我提醒你,在量子力学的通常公式中,量子系统在初始时间被指定为在与哈密顿量和它们之间交换的一组完整算符的本征态中选择的某个状态。然后使用哈密顿量来查找系统在稍后时间 t 处于哪种状态。继续计算从 t 0 时的状态 S 0 到 t 时的状态 S 的跃迁幅度,等等。如你所见,时间在这个描述中起着核心作用,但对于相对论系统来说,人们会感到不安,因为即使最终答案是相对论不变的,理论的明显洛伦兹不变性也会丢失。因此,狄拉克开始寻找一种不以时间为核心的公式。为此,他回到了经典力学,那里有两种(类似的)描述:汉密尔顿的描述从头开始单独指出时间,而拉格朗日的描述则没有。具体来说,他寻找经典力学中 AF 的含义,目的是将其推广到量子力学。答案当然是已知的,作用量是正则变换的生成器,它将系统从一个时间带到另一个时间。因此,重新回忆一下正则变换是有益的:
i) 具有抛物线能带和有效质量为 m * 的 2D 半导体。(假设谷简并度为 2。)ii) 石墨烯,我们认为 E > 0 为导带。(E = 0 是能带交叉点,即所谓的狄拉克点。)(假设谷简并度为 2。)
开发数值方法以在通用量子计算机上有效模拟非线性流体动力学是一项具有挑战性的问题。在本文中,定义了 Madelung 变换的广义以通过狄拉克方程求解与外部电磁力相互作用的量子相对论带电流体方程。狄拉克方程被离散化为离散时间量子游动 (DTQW),可在通用量子计算机上有效实现。提出了该算法的一种变体,以在均匀外力的情况下使用当前的噪声中间尺度量子 (NISQ) 设备实现模拟。使用该算法在当前 IBM NISQ 上执行相对论和非相对论流体动力学冲击的高分辨率(高达 N = 2 17 个网格点)数值模拟。这项工作表明可以在 NISQ 上模拟流体动力学,并为使用更一般的量子游动和量子自动机模拟其他流体(包括等离子体)打开了大门。
k空间中的电势和bloch带。b |时间周期性潜力和能量带有浮子带。c,d | 2D狄拉克系统中的浮雕工程,导致浮点边带(红色)和谐振缝隙在交叉点开口。e,f | Ti Bi 2 Se 3中Trarpes对浮标状态的实验观察结果。在不同延迟时间(e)的表面狄拉克锥的trarpes光谱。trarpes频谱在零延迟时间(F)。g |光引起的异常大厅电流信号。h |光诱导的霍尔电导与能量的关系。i |使用Floquet理论在光激发下的有效带结构。面板E是参考文献中的trarpes数据。69,并从参考文献中转载。291,Springer Nature Limited。面板F从参考文献转载。69,Springer Nature Limited。面板G-i从参考文献中转载。71,Springer Nature Limited。71,Springer Nature Limited。
在某些特殊情况下,例如在黑洞附近或在统一加速的框架中,真空闪光似乎产生了有限的温度环境。目前没有实验性确认的这种效果可以解释为在未观察到的区域中追踪真空模式后,可以解释为量子纠缠的表现。在这项工作中,我们确定了一类实验可访问的量子系统,其中热密度矩阵从真空纠缠中出现。我们表明,在晶格上或连续体上,嵌入了D维间dirac fermion真空中嵌入的低维子系统的密度矩阵降低,相对于低维迪拉克汉密尔顿的较低维度。引人注目的是,我们表明真空纠缠甚至可以共同使在零温度下的间隙系统的子系统显示为热无间隙系统。我们在冷原子量子模拟器中提出了混凝土实验,以观察真空 - 键入诱导的热状态。
总数of Lectures –28 Lecture wise breakup Number of Lectures 1 FOURIER TRANSFORMS Fourier Integral as the limit of a Fourier series, Dirichlet conditions, Fourier Integral Theorem, Fourier sine and cosine integrals, Fourier transform and its inverse, Basic properties, Convolution Theorem, Parseval's relation, Dirac Delta Function and its Fourier transform, Fourier transform of partial derivatives, Fourier cosine and sine傅立叶余弦和正弦变换的变换及其逆,基本特性,对工程问题的应用。
最近已经确定,可以通过二维迪拉克材料的表面声波(SAW)来产生非线性谷电流。到目前为止,锯谷电流已归因于翘曲的费米表面或浆果相的影响。在这里,我们证明倾斜机制也可以导致非线性山谷大厅电流(VHC),而将托管锯放在带有倾斜的狄拉克锥体上的材料中,则将其放置在压电基底物上。发现非线性VHC对倾斜相对于锯的方向表现出Sinθ的依赖性。此外,这种倾斜的非线性声学VHC在放松时间上显示出与浆果相位或三角翘曲的贡献的独立性。值得注意的是,单次应变石墨烯中倾斜机理的非线性声学VHC的大小是两个阶比MOS 2中报道的级数大,源自浆果相的影响和扭曲效应。
摘要:Na 3 BI是第一个实验验证的拓扑狄拉克半学(TDS),是托管相对论迪拉克费米斯的石墨烯的3D类似物。从基本的角度来看,其非常规动量 - 能量的关系很有趣,具有令人兴奋的物理特性,例如手性荷载体,手性异常和弱反定位。它还显示出实现拓扑电子设备(例如拓扑晶体管)的希望。在这篇综述中,提出了过去几年在Na 3 BI上取得的实质进展的概述,重点是通过分子束外途径合成的技术相关的大面积薄膜。引入了基于Na 3 BI的独特电子特性的关键理论方面。接下来,审查了不同底物的增长过程。光谱和微观特征被说明,并在不同兴奋剂方面对半古典和量子转运现象进行了分析。解决了由二维限制而产生的新兴特性,包括厚度依赖性和电场驱动的拓扑相变,对当前挑战和预期的未来进步的前景进行了探索。
摘要:由于成本效益和易于操作,室温长波红外(LWIR)检测器比低温溶液优先。当前未冷却的LWIR探测器(例如微量体计)的性能受到降低的灵敏度,缓慢的响应时间和缺乏动态光谱可调性的限制。在这里,我们提出了一个基于石墨烯的有效室温LWIR检测器,利用其可调的光学和电子特性,具有高检测性和快速响应时间。固有的弱光吸收可以通过与光腔耦合的图案化石墨烯上的狄拉克等等离子增强。通过不对称载体生成环境,通过Seebeck效应将吸收的能量转化为光伏。此外,通过静电门控实现8-12μmLWIR带中的动态光谱可调性。拟议的检测平台铺平了新一代未冷却的基于石墨烯的LWIR光电探测器,用于诸如分子传感,医学诊断,军事,安全和空间之类的广泛应用。关键字:红外探测器,石墨烯,二维材料,狄拉克等离子,光热效应