■接受对象识别训练的深神经网络(DNNS)提供了高级视觉皮层的最佳当前模型。尚不清楚的是,诸如网络架构,训练和对大脑数据的拟合等实验性选择有多么强烈的选择,这有助于观察到的相似性。在这里,我们将九个DNN体系结构的多样化集与他们解释人类下颞(hit)皮质中62个对象图像的代表性几何形状的能力,如用fMRI测量。我们将未经训练的网络与他们的任务训练的对应物进行了比较,并通过在每层内特征的主要成分进行加权组合,并将其层次的加权组合得以评估,并评估了击中的效果。对于训练和拟合的每种组合,我们使用独立的
■接受对象识别训练的深神经网络(DNNS)提供了高级视觉皮层的最佳当前模型。尚不清楚的是,诸如网络架构,训练和对大脑数据的拟合等实验性选择有多么强烈的选择,这有助于观察到的相似性。在这里,我们将九种DNN体系结构的多样化集与它们解释人类下颞皮层中62个对象图像的代表性几何形状(hit)的能力,如用fMRI所测量的。我们将未经训练的网络与他们的任务训练的对应物进行了比较,并通过在每层内特征的主要成分进行加权组合,并将其层次的加权组合得以评估,并评估了击中的效果。对于训练和拟合的每种组合,我们使用独立的
dnns现在通常被用作成人腹流的模型(Richards等,2019; Yamins等,2014; Zhuang等,2021),但甚至不比成人视力研究,它们还提供了对视觉发展的新颖洞察力的潜力。拥有学习过程的机械模型是没有直接访问的,因为Intants不能参与典型的认知实验或报告其经验。此外,婴儿和机器学习之间的相似之处是两个领域的研究人员越来越兴趣(Zaadnoordijk,Besold,&Cusack,2022; Smith&Slone,2017年)。最近的工作表明,从婴儿的角度来看,数据甚至可以有效地训练大型语言模型(Pandey,Wood和Wood,2024年),并提供了学习单词视频引用的必要结构(Vong,Wang,Orhan,&Lake,2024年)。我们的工作在发育过程中提出了这一方法,使用DNN来表征附加单词的视觉表示,并提出神经连接学家(Doerig et al。,2023)研究框架发展为发育神经科学。
在过去的十年中,人工智能 (AI) 领域取得了广泛的发展。现代放射肿瘤学基于对先进计算方法的利用,旨在实现个性化和高诊断和治疗精度。可用成像数据的数量和机器学习 (ML),特别是深度学习 (DL) 的不断发展,引发了从解剖和功能医学图像中发现“隐藏”生物标志物和定量特征的研究。深度神经网络 (DNN) 在图像处理任务中取得了出色的性能并得到了广泛的应用。最近,DNN 已被考虑用于放射组学,它们在可解释人工智能 (XAI) 方面的潜力可能有助于临床实践中的分类和预测。然而,它们中的大多数都使用有限的数据集并且缺乏普遍适用性。在本研究中,我们回顾了放射组学特征提取的基础知识、图像分析中的 DNN 以及有助于实现可解释人工智能的主要可解释性方法。此外,我们讨论了多中心招募大型数据集的关键要求,增加了生物标志物的变异性,从而确定放射组学的潜在临床价值和开发强大的可解释人工智能模型。
人类和动物擅长从有限的数据中进行泛化,这种能力尚未被人工智能完全复制。本视角研究生物和人工深度神经网络 (DNN) 在分布内和分布外环境下的泛化能力。我们提出两个假设:首先,与离散认知实体(如物体、词语和概念)相关的神经流形的几何性质是强大的序参量。它们将神经基础与泛化能力联系起来,并提供一种统一的方法论来弥合神经科学、机器学习和认知科学之间的差距。我们概述了神经流形几何研究的最新进展,特别是在视觉物体识别方面,并讨论了将流形维数和半径与泛化能力联系起来的理论。其次,我们认为广度 DNN 的学习理论,尤其是在热力学极限下的学习理论,为生成所需神经表征几何和泛化的学习过程提供了机制上的见解。这包括权重范数正则化、网络架构和超参数的作用。我们将探讨该理论的最新进展和持续面临的挑战。我们还将讨论学习的动态及其与大脑表征漂移问题的相关性。
摘要。预测性业务流程监控 (PBPM) 是一类旨在预测运行轨迹中的行为(例如下一个活动)的技术。PBPM 技术旨在通过向流程分析师提供预测来提高流程性能,支持他们进行决策。然而,PBPM 技术的有限预测质量被认为是在实践中建立此类技术的主要障碍。通过使用深度神经网络 (DNN),可以提高该技术的预测质量,以完成诸如下一个活动预测之类的任务。虽然 DNN 实现了良好的预测质量,但由于其学习表示的分层方法,它们仍然缺乏可理解性。尽管如此,流程分析师需要理解预测的原因,以确定可能影响决策的干预机制,以确保流程性能。在本文中,我们提出了 XNAP,这是第一个可解释的基于 DNN 的 PBPM 技术,用于下一个活动预测。 XNAP 集成了可解释人工智能领域的分层相关性传播方法,通过提供活动的相关性值,使长短期记忆 DNN 的预测可解释。我们通过两个现实生活中的事件日志展示了我们的方法的优势。
深度神经网络 (DNN) 是功能强大的黑盒预测器,在各种任务上都取得了令人印象深刻的表现。然而,它们的准确性是以牺牲可理解性为代价的:通常不清楚它们如何做出决策。这阻碍了它们在医疗保健等高风险决策领域的适用性。我们提出了神经加性模型 (NAM),它将 DNN 的一些表达能力与广义加性模型固有的可理解性相结合。NAM 学习神经网络的线性组合,每个神经网络都关注一个输入特征。这些网络是联合训练的,可以学习输入特征和输出之间任意复杂的关系。我们在回归和分类数据集上的实验表明,NAM 比广泛使用的可理解模型(如逻辑回归和浅层决策树)更准确。它们在准确性方面的表现与现有的最先进的广义加性模型相似,但更灵活,因为它们基于神经网络而不是增强树。为了证明这一点,我们展示了如何利用 NAM 对合成数据和 COMPAS 累犯数据进行多任务学习(由于其可组合性),并证明了 NAM 的可微分性使它们能够为 COVID-19 训练更复杂的可解释模型。源代码可在 neuro-additive-models.github.io 上找到。
用于大脑计算机界面(BCI)分类的深神经网络(DNN)通常会在跨多种环境进行训练时学习一般特征,因此可以将这些特征调整为特定环境。尽管在这种方法中找到了一些成功,但我们建议这种解释是有限的,替代方案将更好地利用新(公开)可用的大规模脑电图(EEG)数据集。我们考虑如何适应用于语言建模(LM)的技术和体系结构,这些技术和架构似乎能够以相同的静脉为DNN摄取大量数据来开发脑电图建模。我们特别适应了一种有效用于自动语音识别的方法,该方法(与LMS)类似地使用自我监督的训练目标来学习原始数据信号的压缩表示。适应脑电图后,我们发现单个预训练的模型能够建模具有不同硬件记录的完全新颖的RAW EEG序列,并且不同的主题执行不同的任务。此外,该模型的内部表示和整个体系结构都可以对各种下游BCI和EEG分类任务进行精确调整,在更多的任务(睡眠阶段分类)中表现优于先前的工作。
这项研究提出了用于家庭服务机器人中非语言通信的低计算成本手动动作识别系统。该系统基于回声状态网络,该网络需要比深神经网络(DNNS)较低的计算成本,并处理人类骨骼坐标的时间序列数据以识别手持动作。此外,本研究提出并比较了骨骼坐标的两种类型的预处理方法,以确保人类位置在框架上的鲁棒性:一种方法提取肩部和手臂角度,无论人的位置以及其他均能使骨骼坐标归一化。实验结果表明,所提出的系统具有竞争精度,并且可以改变人类位置。
场效应晶体管 (FET) 传感器是一种极具吸引力的电位法 (生物) 化学测量设备,因为它们具有快速响应、低输出阻抗以及在标准集成电路制造技术中实现微型化的潜力。然而,这些传感器在实际应用中的广泛采用仍然有限,主要是因为时间漂移和交叉敏感性会在测量中引入相当大的误差。在本文中,我们证明,可以通过联合使用一系列 FET 传感器(针对目标和主要干扰离子进行选择)和机器学习 (ML) 方法来纠正这种非理想情况,以便连续和在现场准确预测离子浓度。我们研究了线性回归 (LR)、支持向量回归 (SVR) 和最先进的深度神经网络 (DNN) 在实际水质评估条件下连续 90 天内收集的组合 H +、Na + 和 K + 离子敏感 FET (ISFET) 读数序列监测 pH 时的预测性能。所提出的 ML 算法是根据从商用 pH 传感器获得的参考在线测量值进行训练的。结果表明,DNN 能够提供超过一周的精确 pH 值监测,与标准的两点传感器校准方法相比,相对均方根误差降低了 73%。