摘要本评论论文对重点介绍了机器人握把的挑战以及各种机器学习技术的有效性,尤其是那些利用深神经网络(DNNS)(DNN)和增强学习(RL)的挑战的全面分析。这篇评论的目的是通过在一个地方收集不同形式的深入学习(DRL)掌握任务来简化他人的研究过程。通过对文献的彻底分析,该研究强调了对机器人抓住的批判性质,以及DRL技术(尤其是软性批评(SAC)策略)如何在处理任务方面表现出很高的效率。这项研究的结果对机器人的更先进和有效的握把系统具有重要意义。在该领域进行的持续研究对于进一步增强机器人在处理复杂和挑战性任务(例如抓地力)方面的能力至关重要。
近年来,深度学习因其能够有效解决计算机视觉和语言处理等具有挑战性的领域的复杂任务而大受欢迎。尽管取得了成功,但深度神经网络 (DNN) 再现的低级神经活动会生成极其丰富的数据表示。这些表示很难表征,不能直接用于理解决策过程。在本文中,我们以我们的探索性工作为基础,引入了共激活图的概念,并研究了图分析在解释深度表示方面的潜力。共激活图编码了神经元激活值之间的统计相关性,因此有助于表征隐藏层中的神经元对与输出类之间的关系。为了确认我们的研究结果的有效性,我们的实验评估扩展到考虑具有不同复杂程度的数据集和模型。对于每个考虑的数据集,我们探索共激活图并使用图分析来检测相似的类别,找到中心节点并使用图可视化来更好地解释分析结果。我们的结果表明,图分析可以揭示 DNN 工作原理的重要见解,并实现深度学习模型的部分可解释性。© 2021 作者。由 Elsevier BV 出版 这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
多年来,单板计算机 (SBC) 领域的发展一直在不断加快。它们在计算性能和功耗之间实现了良好的平衡,这通常是移动平台所必需的,例如用于高级驾驶辅助系统 (ADAS) 和自动驾驶 (AD) 的车辆应用。然而,对更强大、更高效的 SBC 的需求日益增长,这些 SBC 可以实时运行功耗密集型深度神经网络 (DNN),还可以满足必要的功能安全要求,例如汽车安全完整性等级 (ASIL)。ZF 正在开发“ProAI”,主要用于运行强大而高效的应用程序,例如多任务 DNN,此外,它还具有 AD 所需的安全认证。在这项工作中,我们基于功耗密集型多任务 DNN 架构 Multitask-CenterNet,就 FPS 和功率效率等性能指标比较和讨论了最先进的 SBC。作为一款汽车超级计算机,ProAI 实现了性能和效率的完美结合,其每瓦 FPS 数量几乎是现代工作站笔记本电脑的两倍,几乎是 Jetson Nano 的四倍。此外,根据基准测试期间的 CPU/GPU 利用率,还显示 ProAI 上仍有剩余电量用于执行进一步更复杂的任务。
由于现实世界中的噪音和人为增强的扰动,达到深度神经网络(DNNS)的信任度是一项艰巨的任务。因此,为这些非线性和复杂的参数化模型做出的决策提供解释至关重要。归因方法对于这个目标有希望,但其性能可以进一步提高。在本文中,我们首次提出了归因的决策边界探索方法与可转移的对抗攻击的过程一致。具体而言,可转移的对抗性攻击来自源模型的一般对抗性,这与可以跨越属性中多个决策边界的副本样本的生成一致。UTI-liz liz of the Enstancions,我们通过模型Pa-Rameter探索引入了一种新颖的归因方法。此外,灵感来自研究模型参数的频率能力,我们通过基于频率信息来探索不同模型的决策范围的输入功能来为DNN提供增强的解释。大规模实验表明,使用模型参数e x ploration(attexplore)进行电子i xplanation的方法优于其他最先进的可解释性方法。此外,通过采用其他可转移攻击技术,Attexplore可以探索归因结果的潜在变化。我们的代码可在以下网址提供:https://github.com/lmbtough/attexplore。
人工智能在理解生物视觉方面的前景依赖于将计算模型与大脑数据进行比较,从而捕捉视觉信息处理的功能原理。深度神经网络 (DNN) 已成功匹配大脑前馈视觉通路延伸至腹侧颞叶皮层过程中发生的分层处理转换。然而,我们仍有待了解 DNN 是否能够成功描述早期视觉皮层中的反馈过程。在这里,我们研究了人类早期视觉皮层与具有编码器/解码器架构的 DNN 之间的相似性,以无监督方式训练以填充遮挡并重建未见过的图像。使用表征相似性分析 (RSA),我们比较了人类参与者在观看部分遮挡图像时未受刺激的早期视觉皮层斑块的 3T fMRI 数据与来自相同图像的不同 DNN 层激活。结果表明,我们的网络在与 fMRI 数据的相似性方面优于经典监督网络 (VGG16),这意味着改进的视觉神经网络模型需要结合捕捉皮层反馈处理的架构。我们还发现,与编码器激活相比,DNN 解码器通路激活与大脑处理更相似,这表明早期视觉皮层中存在中级和低级/中级特征的整合。挑战 AI 模型和人脑解决同一项任务提供了一种将 DNN 与大脑数据进行比较的宝贵方法,并有助于限制我们对信息处理的理解,例如神经元预测编码。
深神经网络(DNNS)在许多AI地球观察应用中(AI4EO)中作为关键解决方案的突出性(AI4EO)上升。然而,它们对对抗例子的敏感性构成了一个关键的挑战,损害了AI4EO算法的可靠性。本文在遥感图像(UAD-RS)中提出了一种新型的通用对抗防御方法,利用预训练的扩散模型来保护DNN免受表现出异质对抗模式的各种对抗性示例。具体而言,使用预训练的扩散模型开发了通用的对抗纯化框架,通过引入高斯噪声以及随后从对抗性示例中对扰动的纯化来减轻对抗的扰动。此外,还引入了自适应噪声水平选择(ANL)机制,以确定具有任务指导的Fréchet成立距离(FID)排名策略的纯化框架的最佳噪声水平,从而提高了纯化性能。因此,仅需要一个预训练的扩散模型来净化每个数据集的各种对抗性示例,这些示例具有异质性的对抗模式,从而大大降低了多个攻击设置的训练工作,同时在没有对抗扰动的情况下保持高性能。对四个异质RS数据集进行的实验结果,重点是场景分类和语义分割,表明UAD-RS的表现优于最先进的对抗性纯化方法,从而为七个常见的遇到的对抗性扰动提供了普遍的防御。com/ericyu97/uad-rs)。代码和预训练的模型可在线获得(https://github。
不可察觉的对抗性攻击旨在通过添加与输入数据的不可察觉的概念来欺骗DNN。以前的方法通常通过将共同的攻击范式与专门设计的基于感知的损失或生成模型的功能相结合,从而提高了攻击的易用性。在本文中,我们提出了扩散(Advad)中的对抗攻击,这是一种与现有攻击范式不同的新型建模框架。通过理论上探索基本的建模方法,而不是使用需要神经网络的reg-ular扩散模型的转化或发电能力,从而将攻击作为非参数扩散过程概念化。在每个步骤中,仅使用攻击模型而没有任何其他网络来制定许多微妙而有效的对抗指导,从而逐渐将扩散过程的结束从原始图像终结到了所需的不可感知的对抗性示例。以拟议的非参数扩散过程的扎实理论基础为基础,达到了高攻击功效,并且在本质上降低了整体扰动强度,并实现了高发作的效果。此外,还提出了增强版本的Advad-X,以评估我们在理想情况下的新型框架的极端。广泛的实验证明了拟议的Advad和Advad-X的有效性。与最新的不可察觉的攻击相比,Advad平均达到99.9%(+17.3%)的ASR,为1.34(-0.97)L 2距离,49.74(+4.76)PSNR和0.9971(+4.76)和0.9971(+0.0043)(+0.0043)ssim,抗四个DIFERTIBER架构的DNN均具有三个流行的DNN。代码可在https://github.com/xianguikang/advad上找到。
量子计算机使用量子机械原理进行计算,在许多计算问题中,它们比古典计算机更强大(Shor 1994; Grover 1996)。开发了许多量子机学习算法,例如量子支持矢量机,量子主体分析和量子玻尔兹曼机器(Wiebe等人。2012; Schuld等。2015a; Biamonte等。2017; Rebentrost等。2014;劳埃德等。2014; Amin等。2018; Gao等。2018),这些算法比其经典版本更有效。近年来,DNNS(Lecun等人2015)成为机器学习中最重要,最有力的方法,该方法广泛应用于计算机视觉中(Voulodimos等人。2018),自然语言处理(Socher等人2012)和许多其他领域。DNN的基本单元是感知器,它是一种仿射转换,以及激活函数。激活函数的非线性和深度给出了DNN大量表示
摘要:时间序列分类是数据挖掘中的一个具有挑战性且令人兴奋的问题。根据时间序列进行了分类和诊断的某些疾病。糖尿病是这种情况,可以根据口服葡萄糖耐受性测试(OGTT)的数据进行分析。及时诊断糖尿病对于疾病管理至关重要。糖尿病不会突然出现。取而代之的是,患者表现出葡萄糖耐受性受损的症状,也可以通过葡萄糖耐受性测试来诊断。这项工作使用基于时间序列数据的深神经网络提出了疾病,特定糖尿病和葡萄糖耐受性差的分类和诊断方案。此外,通过Dalla Man和UVA/Padova模型获得了虚拟患者的数据;对实际患者的数据进行了验证。结果表明,深神经网络的精度为96%。这表明DNNS是一个有用的工具,可以在早期检测中改善疾病的诊断和分类。
摘要:通过几乎没有学习的可能性增强脑肿瘤分割的潜力是巨大的。虽然几个深度学习网络(DNN)显示出令人鼓舞的分割结果,但它们都采用了大量的培训数据,以产生适当的结果。此外,对于大多数这些模型而言,一个突出的问题是在看不见的课程中表现良好。为了克服这些挑战,我们提出了一个单次学习模型,以基于单个原型相似性评分来分割脑磁共振图像(MRI)上的脑肿瘤。使用最近开发的几乎没有弹药的学习技术,通过支持和查询图像进行训练和测试,我们试图通过专注于包含前景类别的切片来获取明确的肿瘤区域。与使用整个图像集的其他最近的DNN不同。该模型的训练是以迭代方式进行的,在每个迭代中,随机切片中包含前景类别的随机抽样数据的剪辑被选为查询集,以及与支持集的同一样本的不同随机切片。为了将查询图像与类原型区分开,我们使用了基于非参数阈值的基于公制的学习方法。我们采用了具有60次训练图像和350次测试图像的多模式脑肿瘤图像分割(Brats)2021数据集。使用平均骰子得分和平均得分评估模型的有效性。实验结果提供的骰子得分为83.42,比文献中的其他作品还要大。此外,所提出的单发分割模型在计算时间,内存使用情况和数据数方面优于常规方法。