摘要本评论论文对重点介绍了机器人握把的挑战以及各种机器学习技术的有效性,尤其是那些利用深神经网络(DNNS)(DNN)和增强学习(RL)的挑战的全面分析。这篇评论的目的是通过在一个地方收集不同形式的深入学习(DRL)掌握任务来简化他人的研究过程。通过对文献的彻底分析,该研究强调了对机器人抓住的批判性质,以及DRL技术(尤其是软性批评(SAC)策略)如何在处理任务方面表现出很高的效率。这项研究的结果对机器人的更先进和有效的握把系统具有重要意义。在该领域进行的持续研究对于进一步增强机器人在处理复杂和挑战性任务(例如抓地力)方面的能力至关重要。