摘要 - 将对话代理集成到我们的日常生活中已经变得越来越普遍,但是这些代理中的许多代理无法与人类进行深入的互动。尽管如此,仍然存在明显的数据集,这些数据集从人类机器人交互对话中捕获了多模式信息。为了解决这一差距,我们已经开发了一个个人情感机器人对话系统(Percy),并记录了一个新型的多模式数据集,其中包含丰富的体现相互作用数据。该过程涉及要求参与者填写问卷并在十个主题上收集他们的个人资料,例如爱好和喜欢的音乐。随后,我们在机器人与参与者之间进行了对话,利用GPT-4根据参与者的概况和情感状态来产生适当的响应,这是由面部表达识别和情感分析确定的。自动评估,以评估收集数据的整体质量。两种评估的结果都表明对话中的自然性,参与度,流利性,一致性和相关性以及机器人提供促进反应的能力。值得注意的是,数据集源自与机器人的真正互动,涉及提供个人信息并传达实际情感的参与者。代码和数据集可在[匿名]上公开获取。
1 Wageningen University and Research,人工智能,邮政信箱16,Wageningen,6700 AA,荷兰。皮埃尔·维亚拉(Pierre Viala),蒙彼利埃(Montpellier),34000,法国17莱布尼兹农业景观研究中心,模拟和数据科学,埃伯斯瓦尔德·斯特劳斯(EberswalderStra笔环境研究,计算水系统系,珀索斯特拉赛15号,莱比锡,04318,德国20欧盟委员会联合研究中心,粮食安全部门,E.Fermi 2749,ISPRA,VA I-21027,意大利2 Technical University of Munich, Chair of Data Science in Earth Observation, Arcisstraße 21, Munich, 80333, Germany 3 Purdue University, Department of Agronomy, 915 Mitch Daniels Blvd, West Lafayette, IN 47907, United States 4 Ankara University, Faculty Of Agriculture Engineering, Dögol Caddesi 06100 Tando˘gan, Ankara, 6110,土耳其5马里兰大学,地理科学系,7251 Preinkert Drive,Collega Park,MD 20742,美国6 NASA戈达德太空研究所,GISS气候影响小组,邮件代码611,纽约,纽约10025,纽约,10025 Vrije Universiteit Amsterdam,环境研究研究所,DE BOELELAAN 1105,阿姆斯特丹,1081 HV,荷兰9 Potsdam气候影响研究所,气候弹性研究部,PO Box 60 12 03,Potsdam,Potsdam,4412,德国10,Manitoba University of Manitoba University of Manitoba,Winn winn winn winn 5V6, Canada 11 Universitat de València, Image Processing Laboratory, C/ Catedràtic Agustín Escardino Benlloch, 9, València, 46980, Spain 12 Seidor Consulting, C/Provençals 44, Barcelona, 08019, Spain 13 International Crops Research Institute for the Semi-Arid Tropics, West and Central Africa Region Hub, PO Box 320,巴马科,马里14国际热带农业研究所,自然资源管理,邮政信箱30677,内罗毕,00100,00100,肯尼亚15联邦科学与工业研究组织(CSIRO),农业和食品,147 Underwood Wood Wood,珀斯,澳大利亚6014,澳大利亚16号,澳大利亚16号国家研究所,国家研究所,国家研究所农业研究所,农业和环境。
摘要:在农业研究中,最近的计算机视觉(CV)工作的数量激增。但与一般简历研究不同,大型高质量的公共数据集可稀少。这可以部分归因于不同农业任务,农作物和环境以及数据收集的复杂性之间的高变异性,但也受许多作者发布数据集的沉默影响。这以及缺乏广泛使用的农业数据存储库,是有影响力的因素,阻碍了对农业的CV进行研究以及在通用CV研究中使用农业数据的使用。在本调查中,我们提供了大量在字段上拍摄的图像的高质量数据集。总体而言,我们找到了45个数据集,这些数据集在本文中以及项目网站上的在线目录中列出:https:// smartfarm- inglab.github.github.io/field_dataset_survey/。
当前用于自动驾驶计算机视觉的深层神经网络(DNNS)通常在仅涉及单一类型的数据和urban场景的特定数据集上进行培训。因此,这些模型努力使新物体,噪音,夜间条件和各种情况,这对于安全至关重要的应用至关重要。尽管持续不断努力增强计算机视觉DNN的弹性,但进展一直缓慢,部分原因是缺乏具有多种模式的基准。我们介绍了一个名为Infraparis的新颖和多功能数据集,该数据集支持三种模式的多个任务:RGB,DEPTH和INDRARED。我们评估了各种最先进的基线技术,涵盖了语义分割,对象检测和深度估计的任务。更多可视化和
脑电图 (EEG) 广泛用于诊断癫痫、神经退行性疾病和睡眠相关疾病等神经系统疾病。正确解释 EEG 记录需要训练有素的神经科医生的专业知识,而这种资源在发展中国家非常稀缺。神经科医生花费大量时间筛选 EEG 记录以寻找异常。由于 EEG 测试的产量低,大多数记录结果完全正常。为了最大限度地减少这种时间和精力的浪费,可以使用自动算法提供诊断前筛查,以区分正常和异常 EEG。数据驱动的机器学习提供了一种前进的方向,然而,现代机器学习算法的设计和验证需要经过适当策划的标记数据集。为了避免偏见,基于深度学习的方法必须在来自不同来源的大型数据集上进行训练。这项工作提出了一个新的开源数据集,名为 NMT 头皮 EEG 数据集,由来自不同参与者的 2,417 条记录组成,跨越近 625 小时。每条记录都由一组合格的神经病学家标记为正常或异常。还包括患者的性别和年龄等人口统计信息。我们的数据集主要针对南亚人口。我们在 NMT 上实施和评估了几种为 EEG 诊断前筛查而开发的最先进的深度学习架构,并将其与著名的天普大学医院 EEG 异常语料库的基线性能进行了比较。我们还研究了基于深度学习的架构在 NMT 和参考数据集上的泛化。发布 NMT 数据集是为了增加 EEG 数据集的多样性,并克服 EEG 研究缺乏准确注释的公开可用数据集的问题。
乌克兰和加沙冲突中军事人工智能引发伦理问题的直接相关例子。以色列正在使用人工智能生成间接火力的目标报告,乌克兰冲突双方都在使用自主巡飞弹药。2 在实施这些技术时确实存在一些复杂因素,例如反无人机系统电子战的广泛使用,但这些不在本文的讨论范围内。3 重点是这些人工智能系统与经过训练的使用相比如何运作。美国犹太国家安全研究所 2021 年关于 2021 年加沙冲突的一份报告讨论了以色列目标定位人工智能的优势,英文称为“Gospel”。这种人工智能与 2023 年 10 月开始的持续加沙冲突中使用的人工智能相同。最显着的优势是无与伦比的数据处理和推荐目标的能力。事实证明,Gospel 比传统的人类分析师目标定位系统快 50 倍。然而,由于缺乏公平的数据集工程,出现了严重的伦理问题。4 美国犹太国家安全研究所报告
摘要。机器学习正在改变视频编辑行业。计算机视觉领域的最新进展提升了视频编辑任务的水平,例如智能重构、转描、调色或应用数字化妆。然而,大多数解决方案都集中在视频处理和视觉特效上。这项工作引入了视频编辑的解剖结构、数据集和基准,以促进人工智能辅助视频编辑的研究。我们的基准套件专注于视频编辑任务,而不仅仅是视觉效果,例如自动素材组织和辅助视频组装。为了在这些方面开展研究,我们从电影场景中采样的 196176 个镜头中注释了超过 150 万个标签,其中包含与电影摄影相关的概念。我们为每个任务建立了有竞争力的基线方法和详细的分析。我们希望我们的工作能够激发对人工智能辅助视频编辑的未开发领域的创新研究。代码可在以下位置获得:https://github.com/dawitmureja/AVE.git。
人工智能 (AI) 的最新进展激发了人们对 AI 刺激经济增长潜力的兴奋,学者们认为 AI 有可能成为我们这个时代最重要的“通用技术”(Brynjolfsson & McAfee,2017 年)。然而,人们担心,AI 的进步也可能对劳动力市场、企业和行业产生重大影响,因为它会取代工人、改变职业管辖权、改变战略并影响绩效。几十年来,学者们一直在思考信息技术的快速发展是否以及如何改变竞争和战略的性质(Bennett & Hall,2020 年;Bettis & Hitt,1995 年;Tippins & Sohi,2003 年)。近年来,越来越多的研究人员开始研究人工智能如何影响企业设计、战略、组织学习和管理(例如,Balasubramanian、Xu 和 Ye,2020 年;Bughin、Kretschmer 和 van Zeebroeck,2019 年;Iansiti 和 Lakhani,2020 年;Jia、Luo 和 Fang,2020a、2020b;Khashabi 和 Kretschmer,2019 年;Raj 和 Seamans,2019 年;Wuebker、Saouma 和 McGahan,2018 年)。然而,尽管学术文献和公共媒体对人工智能对职业、企业和市场的影响非常感兴趣,但系统的证据收集却很少。缺乏证据的部分原因在于人工智能的快速发展是一种新兴现象,衡量其影响的标准尚未确定,因此也不适合发展(McElheran,2018;Raj & Seamans,2018)。
摘要 — 在 COVID-19 大流行期间,疫苗犹豫仍然是公共卫生官员面临的主要挑战。由于这种犹豫破坏了疫苗接种运动,许多研究人员试图找出其根本原因,发现社交媒体平台上越来越多的反疫苗错误信息是这一问题的关键因素。我们探索了 Twitter 作为误导性内容的来源,目的是提取激发疫苗错误信息传播的重叠文化和政治信仰。为此,我们收集了一组与疫苗相关的推文数据集,并在具有传播和新闻背景的注释团队的帮助下对其进行了注释。最终,我们希望这可以带来有效且有针对性的公共卫生传播策略,以接触具有反疫苗信念的个人。此外,这些信息有助于开发机器学习模型,以自动检测疫苗错误信息帖子并对抗其负面影响。在本文中,我们介绍了 Vax-Culture,这是一个新的 Twitter COVID-19 数据集,包含 6373 条与疫苗相关的推文,并附有大量人工提供的注释,包括疫苗犹豫立场、推文中任何错误信息的指示、每条推文中批评和支持的实体以及每条推文传达的信息。此外,我们定义了五个基线任务,包括四个分类任务和一个序列生成任务,并报告了一组最近基于 Transformer 的模型的结果。数据集和代码可在 https://github.com/mrzarei5/Vax-Culture 上公开获取。索引术语 — 自然语言处理、疫苗错误信息、疫苗犹豫、Twitter 数据集
摘要 —本文介绍了一个开放式数据库,重点研究可穿戴设备的心理工作负荷 (MW) 评估系统。腕带光电容积图 (PPG) 作为可穿戴设备的代表。此外,数据库中还包含一个可以记录心电图 (ECG)、皮肤电反应 (GSR) 和指尖 PPG 的临床设备作为参考。通过对 22 名受试者执行 N-back 任务来诱发 MW。参与者被要求在实验开始时回答匹兹堡睡眠质量指数 (PSQI) 问卷,并在每次 N-back 任务后回答 NASA 任务负荷指数 (NASA-TLX) 问卷。数据分析结果显示了记录模式的潜在用途和 MW 引出协议的可行性。最后,MAUS 数据集现已可供学术使用 1 。此外,我们还提出了一个可重复的基线系统作为初步基准 2,其 ECG、指尖 PPG、腕带 PPG 的测试准确率分别为 71.6%、66.7% 和 59.9%。