摘要 基于监督学习的目标检测算法是当前目标检测的主流算法,高质量的数据集是目标检测算法获得良好检测性能的前提,数据集的数量和质量越大,模型的泛化能力越强,也就是说数据集决定了模型学习的上限。卷积神经网络以强监督的方式优化网络参数,通过比较预测帧与人工标注的真实帧来计算误差,然后将误差传入网络进行不断优化。强监督学习主要依靠大量图像作为模型进行不断学习,因此图像的数量和质量直接影响学习的结果。本文提出了一个用于检测空间中常见目标的数据集STAR-24K(即超过24000幅图像的空间目标识别数据集)。由于目前没有公开可用的空间目标检测数据集,我们从 NASA(美国国家航空航天局)和 ESA(欧洲航天局)官方网站发布的图片和视频等一系列渠道中提取了一些图片,并将其扩展到 24,451 张图片。我们对流行的物体检测算法进行了评估以建立基准。我们的 STAR-24K 数据集在 https://github.com/Zzz-zcy/STAR-24K 上公开。关键词:公开数据集、空间目标检测、深度学习、计算机视觉。
现代生活的几乎所有方面都取决于太空技术。多亏了计算机视频的一般和深度学习技术的巨大进步,几十年来,全世界都见证了将深度学习的发展用于解决太空问题的问题,例如自动驾驶机器人,诸如示踪剂,类似昆虫的机器人,类似昆虫的机器人和SpaceCraft的健康监测。这些只是一些在深度学习的帮助下具有高级空间行业的重要例子。但是,深度学习模型的成功需要大量的培训数据才能具有不错的性能,而另一方面,用于培训深度学习模型的公开空间数据集非常有限。当前没有用于基于太空的对象检测或实例分割的公共数据集,部分原因是手动注释对象分割掩码非常耗时,因为它们需要像素级标签,更不用说从空间获取图像的挑战了。在本文中,我们的目标是通过释放数据集以进行航天器检测,实例分割和零件识别来填补这一差距。这项工作的主要贡献是使用太空设置和卫星的图像开发数据集,并具有丰富的注释,包括绑定的航天器和口罩的框架盒对物体部分的水平,这些盒子是通过自动程序和手动努力的混合而获得的。我们还提供了对象检测和Intance Sementation的最新方法作为数据集的基准。可以在https://github.com/yurushia1998/satellitedataset上找到下载建议数据集的链接。
本文报告了使用基于快速串行视觉呈现 (RSVP) 范式的脑机接口 (BCI) 系统获取的基准数据集。该数据集包含 64 名健康受试者 (sub1, ..., sub64) 在执行目标图像检测任务时的 64 通道脑电图 (EEG) 数据。对于每个受试者,数据包含两组(“A”和“B”)。每组包含两个块,每个块包括 40 次试验,对应 40 个刺激序列。每个序列包含 100 张以 10 Hz(每秒 10 张图像)呈现的图像。刺激图像是两类街景图像:有人的目标图像和没有人的非目标图像。目标图像在刺激序列中随机呈现,概率为 1 ∼ 4%。在刺激呈现过程中,要求受试者以主观的方式搜索目标图像并忽略非目标图像。为了保留所有原始信息,数据集是未经任何处理的原始连续数据。一方面,该数据集可用作基准数据集,用于比较基于 RSVP 的 BCI 中的目标识别算法。另一方面,该数据集可用于设计新的系统图并评估其 BCI 性能,而无需通过离线模拟收集任何新数据。此外,该数据集还为基于 RSVP 的 BCI 中的事件相关电位 (ERP) 和稳态视觉诱发电位 (SSVEP) 的表征和建模提供了高质量数据。该数据集可从 http://bci.med.tsinghua.edu.cn/download.html 免费获取。
对自然语音的听觉注意是一个复杂的大脑过程。从生理信号中对其进行量化对于改进和扩大当前脑机接口系统的应用范围很有价值,但这仍然是一项具有挑战性的任务。在本文中,我们展示了一个从对自然语音的听觉注意实验中收集的生理信号数据集。在这个实验中,向 25 名非母语参与者呈现了由不同听觉条件下的英语句子复述组成的听觉刺激,并要求他们转录这些句子。在实验期间,从每个参与者那里收集了 14 通道脑电图、皮肤电反应和光电容积图信号。根据正确转录的单词数量,获得呈现给受试者的每个听觉刺激的注意力分数。发现注意力分数和听觉条件之间存在很强的相关性(p << 0.0001)。我们还制定了涉及收集到的数据集的四个不同的预测任务,并开发了一个特征提取框架。使用具有光谱特征的支持向量机获得每个预测任务的结果,结果优于偶然水平。该数据集已公开,供进一步研究,同时公开了 Python 库 phyaat,以促进本文中提出的结果的预处理、建模和重现。数据集和其他资源在网页上共享 - https://phyaat.github.io 。
1 自闭症谱系障碍 1 1.1 定义. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 8 1.7.2 功能性磁共振成像 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
神经形态工程旨在通过模仿大脑的有效处理来推动计算,其中数据被编码为异步时间事件。这消除了对同步时钟的需求,并在不存在数据时最小化功耗。但是,神经形态算法的许多基准主要集中在空间特征上,忽略了大多数基于序列任务的时间动力学。此差距可能导致评估无法完全捕获神经形态系统的独特优势和特征。在本文中,我们提出了一种旨在基准神经形态学习系统的时间结构化数据集。Neuromorse将英语的前50个单词转换为暂时的摩尔斯密码峰序列。尽管仅使用两个输入尖峰通道来用于摩尔斯点和破折号,但通过数据中的时间模式对复杂的信息进行了编码。所提出的基准在多个时间尺度上包含特征层次结构,这些时间尺度测试了神经形态算法将输入模式分解为空间和时间层次结构的能力。我们证明,使用线性分类器对我们的训练集进行挑战,并且使用常规方法很难识别测试集中的关键字。NeuroMorse数据集可在10.5281/Zenodo.12702379上获得,我们的随附代码在https://github.com/jc427648/neuromorse上获得。
人类情感识别一直是心理物理学和计算机视觉的重要主题。但是,经常发布的数据集有许多局限性。进行检查,大多数数据集都包含仅包含有关面部表情的信息的框架。由于以前的数据集的局限性,很难理解影响人类识别的机制,或者在这些数据集中训练的计算机视觉模型上对人类的识别良好。在这项工作中,我们介绍了一个全新的大型数据集,基于视频的情感并影响上下文数据集(VEATIC)中的跟踪,可以征服先前数据集的限制。Veatic在好莱坞电影,纪录片和家庭视频中有124个视频片段,并通过实时注释进行了连续的价和唤醒评级。与数据集一起,我们采用了一项新的计算机视觉任务,以通过每个视频框架中的上下文和字符信息来推断所选字符的影响。此外,我们提出了一个简单的模型来基准这项新的计算机视觉任务。我们还使用数据集与其他类似数据集进行了预处理模型的性能。实验显示了通过VEATIC验证的模型的竞争结果,表明VEATIC的普遍性。我们的数据集可从https://veatic.github.io获得。
Alexander Khazatsky ∗, 1, Karl Pertsch ∗, 1, 2, Suraj Nair 1, 3, Ashwin Balakrishna 3, Sudeep Dasari 1, Siddharth Karamcheti 1, Sorous Nasiranya 5, Mohan Kumar Srirama 4, LawprenCe Yunliang Chen 2, Kirsty Ellis 6, Peter David Fagan 7, Joey Hejna 1, Masha Itkina 3, Marion Lepert 1, Jason Ma 14, Patrick TREE Miller 3, Jimmy Wu 8, Suneel Belkhale 1, Shivin Dass 5, Huy Ha 1, Abraham Lee 2, Youngwoon Lee 2, 16, Arhan Jain 9, Marius Memmel 9, Sungjae Park 10, Ilija Radosavovic 2, Kaiyuan Wang 11,Albert Zhan 6,Kevin Black 2,Cheng Chi 1,Kyle Hatch 3,San Lin 11,Jingpei Lu 11,Abdul Rehman 7,Pannag r Sanketi 12,Archide Sharma 1,Cody Simpson 3,Cody Simpson 3,Quan Vuong 12,Quan Vuong 12,Quan Vuong 12,Homer Walke 2,Blake Wulfe 3,Blake Wulfe 3,Te Xiao 12 Z. Charlotte Le 2, Yunshuang Li 14, Kevin Lin 1, Roy Lin 2, Zehan Ma 2, Abhiram Maddukuri 5, Suvir Mirchandani 1, Daniel Morton 1, Tony Nguyen 3, Abby O'Neill 2, Rosario Scalise 9, Derick Seale 3, Victor Son 1, Stephen Tian 1, Andrew Wang 2, Yilin Wu 4, Annie XIIE 1,Jingyun Yang 1,Patrick Yin 9,Yunchu Zhang 9,Osbert Bastani 14,Glen Berseth 6,Jeannette Bohg 1,Ken Goldberg 2,Abhinav Gupta 4,Abhishek Gupta 9,Abhishek Gupta 9,Dinesh Jayaraman 14 Rammamoorthy 7,Dorsa Sadigh 1,Shuran Song 1,15,Jiajun Wu 1,Yuke Zhu 5,Thomas Kollar 3,Sergey Levine 2,Chelsea Finn 1
人类对世界的看法是由多种观点和方式塑造的。许多现有数据集从某个角度专注于场景理解(例如以中心的或第三人称的视图),我们的数据集提供了一个全景视角(即具有多种数据模式的多个观点)。具体而言,我们封装了第三人称全景和前视图,以及以富裕方式,包括视频,多频道音频,定向双耳延迟,位置数据数据和文本场景描述,在每个场景中,呈现世界的全面实现,呈现了全世界的全面实现。据我们所知,这是第一个涵盖具有多种数据模式的多个观点的数据库,以模仿现实世界中如何访问每日信息。 通过我们的基准分析,我们在建议的360+x数据集上介绍了5个不同的场景理解任务,以评估综合场景理解中每种数据模式和观点的影响和好处。 我们希望这个独特的数据集能够扩大理解场景的范围,并鼓励社区从更多样化的角度解决这些问题。据我们所知,这是第一个涵盖具有多种数据模式的多个观点的数据库,以模仿现实世界中如何访问每日信息。通过我们的基准分析,我们在建议的360+x数据集上介绍了5个不同的场景理解任务,以评估综合场景理解中每种数据模式和观点的影响和好处。我们希望这个独特的数据集能够扩大理解场景的范围,并鼓励社区从更多样化的角度解决这些问题。
旨在自动从科学文献中提取信息的科学信息提取(Sciie)比以往任何时候都变得更加重要。但是,没有用于聚合物材料的Sciie数据集,这是我们日常生活中普遍使用的重要材料类别。为了弥合这一差距,我们介绍了P oly IE,即用于聚合物材料的新科学数据集。p oly IE是从146个全长聚合物学术文章中提出的,这些文章用不同的命名实体(即材料,性质,瓦斯,条件)以及域专家的n个关系进行注释。p oly IE提出了由于实体的多种词汇格式,企业之间的歧义和可变长度关系所带来的独特挑战。我们评估了最先进的实体提取和关系提取模型,即分析其优势和劣势,并突出了这些模型的一些困难案例。据我们所知,P oly IE是第一个用于聚合物材料的Sciie基准,我们希望它将导致社区从事这项挑战任务的更多研究。我们的代码和数据可在以下网址提供:https://github.com/jerry3027/polyie。