对自然语音的听觉注意是一个复杂的大脑过程。从生理信号中对其进行量化对于改进和扩大当前脑机接口系统的应用范围很有价值,但这仍然是一项具有挑战性的任务。在本文中,我们展示了一个从对自然语音的听觉注意实验中收集的生理信号数据集。在这个实验中,向 25 名非母语参与者呈现了由不同听觉条件下的英语句子复述组成的听觉刺激,并要求他们转录这些句子。在实验期间,从每个参与者那里收集了 14 通道脑电图、皮肤电反应和光电容积图信号。根据正确转录的单词数量,获得呈现给受试者的每个听觉刺激的注意力分数。发现注意力分数和听觉条件之间存在很强的相关性(p << 0.0001)。我们还制定了涉及收集到的数据集的四个不同的预测任务,并开发了一个特征提取框架。使用具有光谱特征的支持向量机获得每个预测任务的结果,结果优于偶然水平。该数据集已公开,供进一步研究,同时公开了 Python 库 phyaat,以促进本文中提出的结果的预处理、建模和重现。数据集和其他资源在网页上共享 - https://phyaat.github.io 。
主要关键词