隐私的支付系统面临着平衡隐私和问责制的艰巨任务:一方面,用户应该能够私下和匿名交易,另一方面,不应容忍非法活动。找到正确平衡的挑战性问题在于有关可靠隐私的研究的核心,该隐私规定使用加密技术来实施政策执行。当前的最新系统只能执行相当有限的政策,例如支出或交易限制或对单个参与者的主张,但无法制定更复杂的政策,例如,共同评估发送者的私人证书和收件人的私人证书,并以跨境支付为单独支付的情况,只需支付这项付款,而无需付款,请在此期间付款。这严重限制了可以按照法规遵守范围(例如金融行动工作组(FATF)旅行规则)使用降级的虚拟资产的案件,同时保留了强大的隐私功能。我们提出了不可链接的符合策略的签名(UL-PC),这是一种增强的加密原始性,扩展了Badertscher等人的工作。(TCC 21)。我们使用使用Charmcrypto进行的原型进行了严格的定义,正式证明的构造和基准,该原型对PC的可行性提供了第一个见解。不可链接的PC具有以下独特的功能组合:1这是一个增强的签名方案,其中公共密钥以隐私保护的方式编码用户的可验证凭证(从凭证授权获得)。2个签名可以通过将收件人的公共密钥指定为已确定的消息来创建(并在后来公开验证)。只有在签名者的属性𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥时,接收器的属性才能满足某些全局策略𝐹(𝑥𝑥,𝑥),才能创建有效的签名。3签名可以由签名者创建,只是知道收件人的公钥;无需进一步的互动,也没有泄漏信息(超出了政策的有效性)。4一旦获得了凭据,用户就可以生成新的公共钥匙,而无需与凭据互动。通过合并签署交易的行为,以提供对参与参与者遵守复杂政策的保证的行为,但要保留在不参与权威的情况下更改公共钥匙的情况,我们正式地展示了UL-PCS是如何改善Monero或ZCASH等隐私套件的一步。
区块链技术已彻底改变了数字AS集,并构建了分散应用程序的方式,从而实现了无信任的交互和不介入的财务系统。然而,区块链生态系统的快速扩展已暴露了互操作性,可伸缩性和权力下放化的关键挑战。这些挑战的核心是缺乏综合和有效的跨链交流。cur租赁解决方案,例如跨链桥,集中式托管人和联合多方计算(MPC)系统经常交易安全性或功能性能。这些体系结构无法满足真正分散的系统的严格要求:消除单个失败点,实现低延迟,高通量操作以及可确保不损害安全性的可扩展性。当前的区块链互操作性系统面临重大挑战,包括勾结和蜜罐等安全风险;高潜伏期和低吞吐量造成的绩效限制,这些实时,大量用例造成了限制;分散的限制会损害弹性和抵抗的抵抗力。要解决这些问题,区块链互相需要一个安全,高度调节且可扩展的解决方案,同时遵守分散原则。这涉及一个零信任档案,以消除对可信赖的中间人的依赖,这是一种能够低延迟的基础架构,
摘要。分散的联合学习(DFL)是一种创新的范式来培训协作模型,以解决单一的失败限制。但是,FL和DFL的安全性和可信赖性因中毒攻击而受到损害,从而对其表现产生负面影响。现有的防御机制是为集中式FL设计的,它们不能充分利用DFL的特殊性。因此,这项工作引入了Sentinel,这是一种防御策略,以抵消DFL中的中毒攻击。Sentinel利用本地数据的可访问性,并定义了一个三步聚合协议,该协议包括相似性过滤,自举验证和归一化以保护恶意模型更新。Sentinel已通过不同的数据集和数据分布进行了评估。此外,已经验证了各种中毒攻击类型和威胁水平。当数据遵循IID(独立和相同分布)配置时,结果与未靶向和有针对性的中毒攻击相对于不靶向和有针对性的中毒攻击提高了最新性能。此外,在非IID配置下,它可以分析Sentinel和其他最先进的强大聚合方法的性能如何降低。
摘要。动态分散功能加密(DDFE)。(加密20)表示(多客户)功能加密的强大概括。它允许用户动态加入并贡献私人输入,以单独控制联合功能,而无需信任的权威。最近,Shi和Vanjani(PKC'23)提出了用于掩盖功能内部产品(FH-IP)的第一个多客户功能加密方案,而无需依赖随机的甲壳。毫无意义地,他们的构建仍然需要一个值得信赖的关键权威,因此,打开了一个问题,即标准模型中是否可以存在全面的FH-IP-DDFE。在这项工作中,我们通过引入可更新的伪零共享来回答这个问题,这是一个新颖的概念,它提供了在标准模型中构建安全DDFE计划所需的关键功能和安全性。我们的第二个贡献是一种新颖的证明策略,它在将FH-IP的任何功能加密方案转换为FH-IP-DDFE时可以保持自适应安全性。一起,这两种技术实现了FH-IP-DDFE的模块化构造,该模块化是可抵抗标准模型中自适应消息和关键查询的安全性。此外,我们的伪零共享方案具有很高的用途,可以在标准模型中获得属性加权总和的第一个DDFE,并补充了Agrawal等人最近基于ROM的结构。(加密23)。
摘要:越来越多的生产商和随附的分散能源(DERS)随附的,为传统的电力系统和电力市场带来了新的机遇和挑战。微电网,虚拟发电厂(VPP),点对点(P2P)交易和联合发电厂(FPPS)提出了不同的计划,以实施生产商协调,并有可能成为电力市场和电力系统运营的新范式。本文提出了针对能源社区的P2P交易计划,该计划在参与的生产商之间以不足的可再生能源供应和具有剩余供应的生产商在避免避免关键的网格条件的同时最大程度地提高社区福利的方式。为此,提出的方案基于最佳功率流(OPF)问题,其多双边经济调度(MBED)公式作为目标函数。基于放松的共识 +创新(RCI)算法,以完全分散的方式实现了解决方案。通过网络代理组织的基于关税的系统来确保网络安全性,该系统利用RCI算法的产品差异化功能。发现拟议的机制准确发现并防止了危险的网络操作,例如网格总线中的过电压,同时成功地为Posumumers的可再生能源提供了经济价值,在P2P的自由市场范围内。
抽象分散的自主组织(DAOS)是一类基于区块链的系统,可支持治理流程。由于设计和验证其治理结构的复杂性,开发Daos尤其具有挑战性。这些与传统的组织形式不同,因为它们的动态适应性和分散的性质。尽管最近提出了模型分散治理的模型方法,但它们对Daos的设计缺乏特殊性。因此,我们分析了Daos的适用性,并开发了一种捕获其治理结构特异性的建模语言。与其他方法不同,所提出的建模语言将对DAO开发的高适合性与可用性相结合,由其图形表示法提供。使用体内案例研究对建模语言进行定量和定性评估。这涉及对圈子UBI(通用基本收入)社区货币系统的基于DAO的分散治理基础设施进行建模。该系统为全球大量用户提供基于令牌的无条件收入。
Gregory、Henfridsson、Kaganer 和 Kyriakou (2020) 强调了数据和人工智能作为平台可用来提升用户价值的战略资源的重要作用。然而,他们的文章忽略了一个重要的概念区别:与平台连接的分散用户的安装基础位于平台所有者公司的边界之外,而从该安装基础获得的累积数据存在于公司边界内部并受公司控制。解释这一区别带来了两个与他们的理论不同的关键点。首先,平台生态系统的分散结构使得平台的价值获取成为分析数据驱动学习对用户的影响时必不可少的考虑因素。由于人工智能和数据允许平台增加平台所有者从用户那里获取的价值份额,因此用户感知到的价值往往会下降。其次,作为平台公司的内部资产,来自用户和补充者的数据表现出与控制安装基础本身的动态不同的动态。因此,平台数据存量的数量和质量与平台安装基础的规模仅松散地耦合。我们强调了这种区别对于推出新的多边平台的管理者的战略意义。
具体来说,这是一种技术经济建模工具,能够实时控制和公平共享可再生能源资源,不受物理资产退化和网络约束的影响。技术经济分析的结果表明,与分布式个人拥有的资产相比,共同拥有的资产(社区资产)可以节省更多成本(更高的收益)。这些结果表明,确定公平再分配或分配社区项目中实现的收益非常重要。
摘要:本文讨论了电动汽车充电站的分散式电力调度。电力调度问题通过实时 Stackelberg 博弈解决。在这个博弈中,领导者是电动汽车充电站 (EVCS),追随者是电动汽车。EVCS 的偏好被设计为自给自足、为电动汽车提供充电服务以及维持电池储能系统的能量水平,这些偏好通过不同的效用函数来描述。此外,追随者的偏好是最大化他们的电动汽车充电功率。学习算法利用共识网络以迭代分散的方式达到广义 Stackelberg 均衡,作为电动汽车之间的电力调度。模拟中的静态和动态案例研究都验证了所提策略的成功实施、对不确定性的灵活性以及对电动汽车数量的可重构性。与以电动汽车平均充电时间、电池储能系统充放电次数、电网能量交换为衡量标准的集中式基准策略相比,该策略也具有优异的性能。最后,建立了一个缩小规模的实验实现,以验证基于博弈论的策略的功能性和有效性。
与此同时,英国差价合约计划第四轮分配中,许多海上风电项目取得成功,包括Ørsted 的2.85GW Hornsea Three项目、Red Rock 和 ESB 的1.8GW Inch Cape 项目一期,以及苏格兰电力的1.37GW East Anglia THREE 项目一期。海上风电的执行价格是所有技术中最低的,为37.35英镑/兆瓦时(42.04美元/兆瓦时),比2015年第一轮分配的价格下降了近70%。该计划共有93个绿色能源项目获得批准,旨在提供近11GW的可再生能源,这些能源将于2023年和2024年上线。15