皮质脊髓神经途径对于运动控制和移动执行至关重要,在人类中,通常使用并发的电解质学(EEG)和肌电图(EMG)录音来研究它。但是,当前捕获这些记录之间高级和上下文连接性的方法具有重要的局限性。在这里,我们基于密度比的正交分解来介绍统计依赖估计量的新应用,以模拟皮质和肌肉振荡之间的关系。我们的方法通过学习特征值,特征函数和密度比的投影空间从信号实现的实现,解决皮质 - 肌肉连接性皮质的可解释性,可伸缩性和局部时间依赖性来扩展。我们通过实验证明,从皮质肌肉连通性中学到的本征函数可以准确地对运动和受试者进行分类。此外,它们揭示了确认运动过程中特定脑电图通道激活的通道和时间依赖性。我们的代码可在https://github.com/bohu615/corticomuscular-eigen-coder上找到。
摘要 — 我们考虑电力容量扩张模型,该模型通过最小化投资和运营成本来优化投资和退役决策。为了为规划和政策决策提供可靠的支持,这些模型需要包括详细的运营和时间耦合约束,考虑与天气相关的参数和需求数据的多种可能实现,并允许对离散投资和退役决策进行建模。这些要求导致大规模混合整数优化问题,而这些问题是现成的求解器无法解决的。因此,实际的解决方法通常依赖于精心设计的抽象技术,以在减少计算负担和模型准确性之间找到最佳折衷。Benders 分解提供了可扩展的方法来利用分布式计算资源并使模型具有高分辨率和计算性能。在本研究中,我们为具有多个规划期、随机运营场景、时间耦合策略约束以及多日储能和水库水力资源的大规模容量扩张模型实施了一种量身定制的 Benders 分解方法。使用多个案例研究,我们还评估了几种水平集正则化方案以加速收敛。我们发现,在可行集内部选择规划决策的正则化方案与以前发布的方法相比表现出更优异的性能,从而能够以前所未有的计算性能解决高分辨率混合整数规划问题。
轻度认知障碍 (MCI) 是急性阿尔茨海默病的主要阶段,早期发现对于患者及其周围的人至关重要。由于这一轻度阶段没有明显的临床症状,其症状介于正常衰老和严重痴呆之间,因此很难识别。在此,我们提出了一种基于张量分解的方案,用于使用脑电图 (EEG) 信号自动诊断 MCI。提出一种新的投影,它保留电极的空间信息以构建数据张量。然后,使用并行因子分析 (PARAFAC) 张量分解提取特征,并使用支持向量机 (SVM) 将 MCI 与正常受试者区分开来。在两个不同的数据集上测试了所提出的方案。结果表明,基于张量的方法在诊断 MCI 方面优于传统方法,对于第一个和第二个数据集的平均分类准确率分别为 93.96% 和 78.65%。因此,维持信号的空间拓扑结构在 EEG 信号的处理中起着至关重要的作用。
最小流量分解(MFD)是一个NP硬性问题,要求将网络流分解为最小路径集(以及相关的权重)。它的变体是生物信息学(例如RNA组装)中多重组问题的强大模型。由于其硬度,实用的多重组装工具使用启发式方法或解决问题的更简单,多项式可溶解的版本,这可能会产生并非最小的解决方案或无法完全分解流。在这里,我们基于整数线性编程(ILP),在无环网络上提供第一个快速,精确的求解器。我们方法的关键是仅使用二次变量数量的所有解决方案路径编码。我们还将ILP公式扩展到许多实用变体,例如合并更长或配对的读数或最小化流误差。在模拟和实现剪接图上,我们的方法求解了<13 sec-onds中的任何实例。我们希望我们的配方能够属于未来实用的RNA组装工具的核心。我们的实现可在GitHub上免费获得。
微电网具有越来越多的关注,因为它们可以促进可再生能源的整合。为了充分利用微电网,制定并解决了优化问题以确定其最佳计划(即尺寸和能源管理)。但是,这些问题很复杂且耗时解决。在本文中,我们关注基于弯曲器算法的时间分解,以减少计算时间,同时仍然获得最佳解决方案。时间分解将初始问题划分为较小的时间间隔的子问题。这项工作的第一个原始性是将这种时间分解应用于混合企业线性问题的方法的主张,以实现微电网的最佳计划。第二个独创性是研究以下相关参数对基于Benders算法的时间分解时间计算时间的影响:问题的分解周期,问题的性质,整体时间范围和CPU的数量。此外,与以前的文献相反,我们提出的方法表现出计算时间减少。对于经过考虑的案例研究,它们的最高为5.6倍。我们的结果还突出了分解周期的存在,该分解周期最大化了性能。此外,我们发现时间分解特别有效,对于较大的时间范围的混合构成线性问题,并且可以使用超过16个CPU。提出的通用方法和我们的结果对研究人员和旨在在缩短计算时间内找到其微电网的最佳尺寸和运行的微电网项目持有人可能非常有用。
X射线成像是一种众所周知的技术,用于对物体的非破坏性成像和表征。基于X射线放射图,可以获得对象的形状,密度和原子数的信息。这些功能使X射线成像高度适用于非破坏性分析和测试。A key technique in non-destructive radiography-based analysis is material de- composition, whose aim is to determine the materials composition of an object.在医学成像中,可以应用材料分解以区分良性和恶性肿瘤[2]。在货物检查中,可以将材料分解构成以识别农产品中的走私商品或杂质[3]。Two main techniques for material decomposition have been described in the literature: Dual Energy Material Decomposition (DEMD) and Single Energy Material Decomposition (SEMD).DEMD利用材料衰减系数的能量依赖性。The linear attenuation coefficient as a function of the energy can be modeled as a linear combination of basis functions, such as those describing the energy dependency of the photoelectric interaction and total cross-section of the Compton scattering.另一种方法是选择依赖能量的基本材料(例如骨和水)作为基础函数[4]。[5]。此技术使衰减中的差异在常规重建中是看不见的。另一种方法是获取物体的高和低能量X光片,从而产生具有独特投影值的X光片[6]。然后,使用查找表将投影值链接到路径长度。基于此信息,可以获得材料厚度。减少暴露需要改编硬件,例如双源单元或光子计数检测器[4]。此外,由于DEMD需要进行两次扫描,因此对物体的辐射暴露可能是一个问题,尤其是在医学成像中[4]。此外,查找表的创建可能很耗时[6]或不准确[7]。单能投影(SEMD)另一方面,通过使用远程长度的知识来估算仅一次扫描的材料组成。这些路径长度可以从CT重建[6]或从3D激光扫描仪获得的对象的表面图像估算[8]。最近,显示路径长度也可以通过将对象的表面网格注册到其扫描的投影中直接从几个X射线投影中恢复[9]。此方法不需要除X射线扫描仪或完整CT扫描以外的其他硬件,它提供了将其集成到材料分解过程中的潜力。我们提出的方法估计了用X射线光扫描的物体的均匀混合物的化学质量分数。CAD-ASTRA工具箱用于计算路径长度和模拟多色X射线射线照相。
摘要 过苯甲酸叔丁酯(TBPB)是一种常见的聚合反应引发剂,但其分子结构中的过氧键极易断裂,导致分解甚至爆炸。为探究TBPB的热行为,抑制反应过程中产生的自由基的热危害,采用成熟的量热技术对TBPB的热稳定性进行了测定。采用Kissinger-Akahira-Sunose (KAS)、Flynn-Wall-Ozawa (FWO)和Starink动力学方法计算了TBPB分解反应的表观活化能。通过傅里叶变换红外光谱(FTIR)实验测定了TBPB热分解产物,利用电子顺磁共振波谱(EPR)结合自由基捕获技术对反应过程中产生的自由基进行了定性分析。本研究选取自由基捕获剂及抑制剂2,2,6,6-四甲基哌啶氧基(TEMPO)作为TBPB热分解反应热失控抑制剂,验证了其对相应自由基及TBPB分解反应热失控的抑制效果。研究发现TEMPO可有效降低TBPB潜在的热危险性和事故风险,为TBPB生产、储运过程中热灾害的预防与治理提供有力参考。
现实物理和化学系统中的电子传输通常涉及与大环境进行非平凡的能量交换,这需要定义和处理开放量子系统。由于开放量子系统的时间演化采用非幺正算子,因此开放量子系统的模拟对于仅由幺正算子或门构成的通用量子计算机提出了挑战。这里,我们提出了一种通用算法,用于在量子设备上实现任何非幺正算子对任意状态的作用。我们表明,任何量子算子都可以精确分解为最多四个幺正算子的线性组合。我们在零温度和有限温度振幅阻尼通道中的两级系统中演示了这种方法。结果与经典计算一致,显示出在模拟中期和未来量子设备上的非幺正操作方面的前景。
这项工作提出了一种快速的算法BM-Global,用于核总规化的凸和低级别基质优化问题。bm-Global效率通过低成本步骤来降低客观值,从而利用非概念但光滑的居民 - 蒙特利罗(BM)分解,而有效地逃脱了鞍点,并在saddle点上逃脱了鞍点,并以bm的态度来确保快速的核能速率,以确保快速的全局核能核能,以确保全局的核能范围,以确保全局的全局核能,以确保全局的核定速率,以确保界限的全局效率。在其上,多个近端梯度步骤。所提出的方法可以自适应地调整BM分解的等级,并可以通过多种识别工具在优化过程中自动确定BM分解问题的最佳等级。bm-Global因此,与现有矩阵 - 因子化方法相比,在参数调整上花费的时间少得多,这需要详尽的搜索才能查找此最佳等级。在现实世界中的大型建议系统,正规化内核估计和分子构象方面进行了广泛的实验,以确保BM-全球确实可以有效地呈现出潮汐的局部最小值,以使现有的BM的方法与状态级别相比,这是一个范围较高的核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 均与核能的核能降低了,均匀的核能是 - 正规化程序。根据这项研究,我们在https://www.github.com/leepei/bm-global/上发布了拟议的BM-Global的开源包。
大型语言模型(LLMS)研究的加速度为评估生成的文本开辟了新的可能性。尽管LLM是可扩展和经济的评估者,但这些评估者的可靠性仍然不足。在法官将LLM的提示限制为单一用途以获得最终评估决定时,在元评估中进行了元评估。 然后,他们计算LLMS的输出和Human标签之间的一致性。 这缺乏理解LLM的评估能力的解释性。 鉴于这一挑战,我们提出了DNA-eval,它将评估过程分解为基于教学实践的分解和聚集阶段。 我们的实验表明,它不仅为LLMS评估的评估提供了一个更容易解释的窗口,而且还可以在各种元评估台上的不同LLM中改善高达39.6%的窗口。在元评估中进行了元评估。然后,他们计算LLMS的输出和Human标签之间的一致性。这缺乏理解LLM的评估能力的解释性。鉴于这一挑战,我们提出了DNA-eval,它将评估过程分解为基于教学实践的分解和聚集阶段。我们的实验表明,它不仅为LLMS评估的评估提供了一个更容易解释的窗口,而且还可以在各种元评估台上的不同LLM中改善高达39.6%的窗口。