旱地包括经济价值不大甚至完全无人居住的土地。最好的概述可能是《世界资源 1987》(世界资源研究所,1987 年;关于牧场和荒漠化的部分)。然而,本报告(以及之前的《世界资源 1986》(WRI,1986))重复了一些存在很大科学争议的数字。举例来说,Dregne(1986)估计有 7.7 亿人生活在干旱地区(1980 年),其中 4.5 亿人预计将直接或间接感受到荒漠化的影响。Tolba(1984)给出的生计风险数字为 8.5 亿人。Mabbutt 和 Floret(1980)在联合国教科文组织/联合国环境规划署/联合国开发计划署关于荒漠化的主要研究报告的前言中估计,受到威胁的人数在 5000 万到 8000 万之间。大部分干旱地区的人民生活在非洲。美国国会技术办公室评估(OTA,1986)估计有 3500 万人生活在萨赫勒地区。因此,该数字可能比上面引用的其他来源所暗示的数字要小得多。
最好的概述可能是《世界资源 1987》(世界资源研究所,1987 年;关于牧场和荒漠化的部分)。但是,本报告(以及之前的《世界资源 1986 年》(WRI, 1986))重复了一些存在很大科学争议的数字。举例来说,Dregne(1986)估计有 7.7 亿人生活在干旱地区(1980 年),其中 4.5 亿人预计直接或间接感受到荒漠化的影响。Tolba(1984)给出的生计面临威胁的人数为 8.5 亿。Mabbutt 和 Floret(1980)在联合国教科文组织/联合国环境规划署/联合国开发计划署关于荒漠化的主要研究报告的前言中估计,受到威胁的人数在 5000 万到 8000 万之间。大部分旱地人民生活在非洲。美国国会技术评估办公室(OTA, 1986)估计有 3500 万人生活在萨赫勒地区。因此,这个数字可能比上面引用的其他来源所暗示的数字要小得多。
图 6-5: 氙弧和太阳光光谱 [102] 111 图 A-I: TINUVIN 320 结构 129 图 A-2: 吸收光谱 131 图 A-3: 结构 146 图 A-4: 吸光度 146 图 A-5: 搭接剪切 154 图 A-6: 曝光周期 155 图 B-1: 应力与应变 (MET 16) 182 图 B-2: 应力与应变 (K 404) 182 图 B-3: 应力与应变 (I TIN 53) 182 图 B-4: 应力与应变 (MET 23) 183 图 B-5: 应力与应变 (NUV 1) 183 图 B-6: 应力与应变 (K 100) 183 图 B-7: 应力与应变(NUV 17) 184 图 B-8: 应力与应变 (MET 31) 184 图 B-9: 应力与应变 (NUV 26) 185 图 B-I0: 应力与应变 (MET 4) 185 图 B-ll: 应力与应变 (I TIN 48) 185 图 B-12: 应力与应变 (I TIN 8) 186 图 B-13: 应力与应变 (I TIN 4) 186 图 B-14: 应力与应变 (I TIN 61) 186 图 B-15: 应力与应变 (MET 2) 187 图 B-16: 应力与应变 (I TIN 5) 187 图 B-17: 应力与应变 (MET 17) 187 图 B-18: 应力与应变 (MET 33) 188 图B-19: 应力与应变 (MET 8) 188 图 B-20: 应力与应变 (I TIN 48) 188 图 B-21: 应力与应变 (MET 6) 189 图 B-22: 应力与应变 (NUV 8) 189 图 B-23: 应力与应变 (NUV 4) 189 图 B-24: 应力与应变 (NUV 28) 190 图 B-25: 应力与应变 (NUV 32) 190 图 C-l: (波长与折射率) MET 6 与 MET 192 图 C-2: (波长与折射率) MET 2 与 MET 17 192 图 C-3: (波长与折射率) MET 8 与 MET 17 193 图 C-4: (波长与折射率) NUV 8 vs. NUV 16 193 图 C-5:(波长 vs. 折射率)NUV 16 vs. NUV 3 194 图 C-6:(波长 vs. 折射率)NUV 4 vs. NUV 16 194 图 C-7:(波长 vs. 折射率)I TIN 5 vs.I TIN 48 194 图 C-8:(波长 vs. 折射率)I TIN 4 vs.I TIN 48 195 图 C-9:(波长 vs. 折射率)I TIN 8 vs.I TIN 48 195 图 F-1:DCS 扫描显示 Tg (NUV 8) 212 图 F-2:DCS 扫描显示 Tg (I TIN 5) 212 图 F-3:DCS 扫描显示 Tg (MET 6) 213 图 F-4:DCS 扫描未显示 Tg(I TIN 5) 213 图 F-5:DCS 扫描未显示 Tg(MET 6) 214 图 G-l:1 NUV 9 216 图 G-2:2 NUV 9 216 图 G-3:1 I TIN 58 217 图 G-4:1 MET 30 217 图 G-5:2 I TIN 58 218 图 G-6:2 MET 30 218
摘要:塑料和微塑料污染由于其持久性和对人类健康的潜在不利影响,已经引起了大量的生态问题。通过生物过程降解塑料对生态健康具有重要意义,因此微生物降解塑料的可行性受到了广泛关注。本研究初步探讨了塑料的生物降解机理以及不同的细菌酶(如PET水解酶和PCL-角质酶)在降解不同聚合物(如PET和PCL)中的优势和作用。本文特别关注它们的作用方式和潜在的酶促机制,总结了有关塑料和微塑料生物降解的机制和影响因素的研究,以及它们在生物降解过程中增强合成塑料降解的酶。此外,塑料的生物降解也受到塑料添加剂和增塑剂的影响。塑料成分中的增塑剂和添加剂会产生有害影响。为了进一步提高聚合物的降解效率,本文还初步讨论了各种提高生物降解效率的预处理方法,这些方法可以显著减少有毒塑料污染。现有的研究和数据显示,大量微生物参与了塑料的生物降解,尽管它们的具体机制尚未得到彻底探究。因此,利用各种细菌菌株高效降解塑料以改善人类健康和安全具有巨大的潜力。
摘要一次性塑料袋的使用越来越多地影响了环境问题,因为它需要数千年才能自然降解。为了克服这些问题,粉虫(Tenebrio Molitor L.的幼虫)成为替代解决方案。,由于其肠道中存在共生细菌,它们可以被视为塑料的生物降解剂,从而分泌塑料分泌性酶。因此,本研究旨在比较T. molitor在消耗各种塑料类型和厚度中的降解和消化能力。还使用了两种设计:首先,比较各种塑料类型的降解和消化,其次,比较了各种塑料袋厚度的降解和消化。第一个设计由三种类型的治疗组成,对照组包括三个重复。对照组被浓缩液喂食;治疗组1(P1),PP塑料袋;治疗组2(P2),高密度聚乙烯(HDPE)塑料袋;和治疗组3(P3),泡沫聚苯乙烯。第二种设计包括两种治疗类型,以及由重复组成的对照组。对照组被浓缩液喂食;治疗组1(P1),厚度为0.01 mm的HDPE塑料袋;和治疗组2(P2),HDPE塑料袋,厚度为0.02 mm。结果表明,在第一个设计中,在治疗3(泡沫聚苯乙烯)中出现了最高的降解和消化,平均为0.001267和0.0063片段/个体。第二个设计最高的降解发生在0.000009609 mg/天/个人的P1时。最高的消化发生在P1时,总平均为0.004568片段/个体。关键字:降解,消化,粉虫,塑料,Tenebrio Molitor简介塑料是全球社区广泛用于各种目的的无机材料[1]。塑料由碳和其他元素的聚合物或长链材料制成[2]。塑料袋是公众广泛使用的塑料产品之一[3]。塑料特性是轻巧,柔性,耐水性,浓烈且相对便宜的,它增加了塑料及其废物的使用[4]。实际上,在1年内,UNEP在全球产生了70亿吨塑料废物[5]。尤其是在印度尼西亚,据报道,多达85,000吨塑料袋废物被扔进环境中[6]。这会引起严重的环境问题,因为塑料废物在环境中需要数千年才能降解[7]。环境中经常发现的塑料类型是聚丙烯(PP)和聚乙烯(PE)。pp是一种经常使用的材料,因为它具有防水性,对化学物质具有抗性,对高温具有抗性,并且易于
了解环境中塑料的命运对于对塑料废物的生物学影响的定量评估至关重要。特别是,有必要通过氧化和碎片反应在塑料降解的背景下更详细地分析塑料的寿命。通过太阳能紫外线辐射(UVR)对塑料碎片的光氧化使易于随后的碎片化。氧化后产生的片段和随后暴露于机械应力的片段包括次级微颗粒或纳米颗粒,即新兴污染物类别。本文讨论了紫外线驱动的照片氧化过程,并确定了相关的知识差距和不确定性。知识中存在严重的差距,这些差距是关于波长灵敏度和照片碎片处理过程的剂量反应。鉴于天然紫外线辐照度的异质性,从沉积物中无暴露到浮动,海滩垃圾或空气塑料的完全紫外线暴露,因此认为紫外线驱动的降低/碎片的发生率在不同的位置和环境之间也将发生巨大的变化。生物污染等生物学现象将进一步调节塑料对紫外线辐射的暴露,同时也有可能导致塑料的降解和/或碎片化,而与太阳UVR无关。在许多地区减少太阳能UVR,这是由于蒙特利尔协议的实施及其保护质臭氧的修正案,将对全球紫外线驱动的塑料降低产生影响,以
a 德国航空航天中心 (DLR) 工程热力学研究所,Pfaffienwaldring 38-40, 70569 Stuttgart, 德国 b 亥姆霍兹乌尔姆研究所 (HIU),Helmholtzstraße 11, 89081 Ulm, 德国 c 乌尔姆大学电化学研究所,Albert-Einstein-Allee 47, 89081 Ulm, 德国 d 日本宇宙航空研究开发机构 (JAXA) 宇宙航行科学研究所,神奈川县相模原市中央区吉野台 3-1-1,邮编 252-5210,日本 e 高等研究研究生院 (SOKENDAI),神奈川县相模原市中央区吉野台 3-1-1,邮编 252-5210,日本 f 全球零排放研究中心,国家先进工业科学技术研究所 (AIST),梅园 1-1-1,日本茨城县筑波市 305-8568 g 日本国家先进工业科学和技术研究所 (AIST) 能源保护研究所,日本茨城县筑波市梅园 1-1-1,305-8568,日本 h 长冈工业大学材料科学与技术系,日本新泻县长冈市上富冈 1603-1,940-2188
1. 什么是蛋白质?它们有什么作用?:MedlinePlus Genetics。访问日期:2021 年 5 月 3 日。https://medlineplus.gov/genetics/understanding/howgeneswork/protein/ 2. Klaips CL、Jayaraj GG、Hartl FU。衰老和疾病中的细胞蛋白质稳态途径。J Cell Biol。2017;217(1):51-63。doi:10.1083/jcb.201709072 3. Ciechanover A。蛋白水解:从溶酶体到泛素和蛋白酶体。Nat Rev Mol Cell Biol。2005;6(1):79-87。doi:10.1038/nrm1552 4. Oprea TI、Bologa CG、Brunak S 等人。人类基因组中未探索的治疗机会。天然药物发现评论。2018;17(5):317-332。doi:10.1038/nrd.2018.14 5. Hopkins AL、Groom CR。可用药基因组。天然药物发现评论。2002;1(9):727-730。doi:10.1038/nrd892 6. Collins I、Wang H、Caldwell JJ、Chopra R。通过调节泛素-蛋白酶体途径进行靶向蛋白质降解的化学方法。Biochem J。2017;474(7):1127-1147。doi:10.1042/BCJ20160762 7. Ito T、Ando H、Suzuki T 等人。确定沙利度胺致畸性的主要靶点。Science。 2010;327(5971):1345-1350。doi:10.1126/science.1177319 8. Krönke J、Udeshi ND、Narla A 等。来那度胺可导致多发性骨髓瘤细胞中 IKZF1 和 IKZF3 选择性降解。Science。2014;343(6168):301-305。doi:10.1126/science.1244851 9. Lu G、Middleton RE、Sun H 等。骨髓瘤药物来那度胺可促进 cereblon 依赖性 Ikaros 蛋白破坏。Science。2014;343(6168):305-309。 doi:10.1126/science.1244917 10. Gandhi AK、Kang J、Havens CG 等。免疫调节剂来那度胺和泊马度胺通过调节 E3 泛素连接酶复合物 CRL4(CRBN.) 诱导 T 细胞阻遏物 Ikaros 和 Aiolos 降解,从而共刺激 T 细胞。Br J Haematol。2014;164(6):811-821。doi:10.1111/bjh.12708 11. Chamberlain PP、Lopez-Girona A、Miller K 等。人类 Cereblon–DDB1–来那度胺复合物的结构揭示了对沙利度胺类似物反应的基础。Nat Struct Mol Biol。2014;21(9):803-809。 doi:10.1038/nsmb.2874 12. Ito T, Handa H. Cereblon 及其下游底物作为免疫调节药物的分子靶点。Int J Hematol。2016;104(3):293-299。doi:10.1007/s12185-016-2073-4 13. Matyskiela ME, Lu G, Ito T 等人。一种新型 cereblon 调节剂将 GSPT1 募集到 CRL4 CRBN 泛素连接酶中。Nature。2016;535(7611):252-257。doi:10.1038/nature18611 14. Chamberlain PP, Cathers BE。Cereblon 调节剂:低分子量蛋白质降解诱导剂。Drug Discov Today Technol。 2019;31:29-34。doi:10.1016/j.ddtec.2019.02.004 15. Baek K、Schulman BA。分子胶概念固化。Nat Chem Biol。2020;16(1):2-3。doi:10.1038/s41589-019-0414-3 16. Scheepstra M、Hekking KFW、van Hijfte L、Folmer RHA。药物发现中用于蛋白质降解的双价配体。Comput Struct Biotechnol J。2019;17:160-176。doi:10.1016/j.csbj.2019.01.006