摘要 — 随着数字高程模型 (DEM) 的可用性和分辨率不断提高,对地球和行星表面高程的更大和更精细尺度的监测正在迅速发展。表面高程观测正被用于越来越多的领域,以研究地形属性及其随时间的变化,特别是在冰川学、水文学、火山学、地震学、林业和地貌学中。然而,DEM 通常包含大规模仪器噪声和不同的垂直精度,从而导致复杂的错误模式。在这里,我们提出了一个经过验证的统计工作流程来估计、建模和传播 DEM 中的不确定性。我们回顾了 DEM 准确度和精度分析的最新进展,并定义了一个概念框架来一致地解决这些问题。我们展示了如何通过量化高程测量的异方差来表征 DEM 精度,即随地形或传感器相关变量而变化的垂直精度,以及可能在多个空间尺度上发生的误差的空间相关性。随着高精度观测的日益普及,我们基于在稳定地形上获取的独立高程数据的工作流程几乎可以应用于地球上的任何地方。我们以地形坡度和冰川体积变化为例,说明了如何传播像素尺度和空间高程导数的不确定性。我们发现文献中大大低估了 DEM 中的不确定性,并主张新的 DEM 精度指标对于确保未来陆地高程评估的可靠性至关重要。
自 2001 年以来,DEM 一直参与第一区主办的质量圆桌会议。来自各州的质量保证经理和第一区 EPA 的同行们聚在一起讨论质量问题。由于这项活动,DEM 能够收集和分享来自其他州的大量信息。许多标准操作程序和评估信息都是利用这些计划的经验制定的。DEM 谨对这些组织多年来提供的帮助表示感谢,尤其是 EPA 第一区质量保证问题的联系人。本文件将通过 DEM 质量人员实施。特别感谢 EPA 第一地区的同事,以及 Jim Ball、Leo Hellested、Matt Destefano、Kevin Gillen、Kelly Owens、Joe Haberek、Sue Kiernan、Dave Chopy、Tracey Tyrrell、Chris John、Karen Slattery 以及 DEM 项目团队成员 Paul Kulpa、Gary Jablonski、Rachel Simpson、Jane Sawyers、Heidi Travers、Brian Zalewsky 和 Howard Cook 为 2022 年更新文件提供的意见。
由于遥感领域提供了新的传感器和技术来积累城市区域的数据,这些区域的三维表示在各种应用中引起了很大的兴趣。三维城市区域表示可用于详细的城市监测、变化和损坏检测目的。为了获得三维表示,最简单和最便宜的方法之一是使用数字高程模型 (DEM),它是使用立体视觉技术从非常高分辨率的立体卫星图像生成的。不幸的是,在应用 DEM 生成过程后,我们无法直接获得三维城市区域表示。在仅使用一个立体图像对生成的 DEM 中,通常噪声、匹配误差和建筑物墙壁位置的不确定性非常高。这些不良影响增加了三维表示的复杂性。因此,自动 DEM 增强是一个开放且具有挑战性的问题。为了增强 DEM,我们在此提出了一种基于建筑物形状检测的方法。我们使用慕尼黑的 DEM 和正射全色 Ikonos 图像来解释我们的方法。在对 DEM 和 Ikonos 图像进行预处理后,我们对 DEM 应用局部阈值来检测建筑物等高城市物体的大致位置。为了检测复杂的建筑物形状,我们开发了之前的矩形形状检测(箱体拟合)算法。不幸的是,我们研究区域中的建筑物形状非常复杂。我们假设可以通过像链条一样拟合小矩形来检测这些复杂建筑物的形状。因此,我们将检测到的建筑物分成细长的子部分。然后,我们将之前的矩形形状检测算法应用于这些子部分。在形状检测中,我们考虑 Ikonos 图像的 Canny 边缘以适应矩形框。合并所有检测到的矩形后,我们可以检测甚至非常复杂的建筑结构的形状。最后,使用检测到的建筑物形状,我们在 DEM 中细化建筑物边缘并平滑建筑物屋顶上的噪声。我们相信实施的增强功能不仅可以提供更好的视觉三维城市区域表示,而且还将导致详细的变化和损坏调查。
DCAS的能源管理部(DEM)目前正在我们自己组织和代理合作伙伴中担任职位。在我们的职业页面上的DEM上了解有关能源管理职位的更多信息。
摘要:美国国家海洋和大气管理局 (NOAA) 国家环境信息中心 (NCEI) 生成从本地到全球范围的数字高程模型 (DEM)。总的来说,这些 DEM 对于确定沿海洪水的时间和范围以及改善社区准备、事件预报和预警系统至关重要。我们在 NCEI 启动了一个综合框架,即持续更新 DEM (CUDEM) 计划,其中包含无缝裸地、地形测深和测深 DEM,涵盖整个美国 (U.S.) 大西洋和墨西哥湾沿岸、夏威夷、美国领土和美国太平洋沿岸的部分地区。CUDEM 是目前公共领域中分辨率最高的整个美国大西洋和墨西哥湾沿岸的无缝描绘;沿海地形测深 DEM 的空间分辨率为 1/9 弧秒(~3 米),而离岸测深 DEM 则粗化为 1/3 弧秒(~10 米)。我们使用 NASA 的先进地形激光测高系统 (ATLAS) 仪器(该仪器安装在冰、云和陆地高程卫星 2 (ICESat-2) 观测站上)独立验证了 CUDEM 的陆地部分,并计算出相应的垂直平均偏差误差为 0.12 米 ± 0.75 米(一个标准差),总体 RMSE 为 0.76 米。我们使用免费开源软件 (FOSS) 通过标准化流程生成 CUDEM,并提供对我们代码存储库的开放访问。CUDEM 框架由系统化的平铺地理范围、空间分辨率以及水平和垂直基准组成,以便使用新的数据集合快速更新目标区域,尤其是风暴和海啸事件后。CUDEM 框架还能够将本地规模 DEM 中采集的高分辨率数据集合快速整合到 NOAA NCEI 的区域和全球 DEM 套件中。未来的研究工作将侧重于生成其他数据产品,例如空间明确的垂直误差估计和形态变化计算,以增强 CUDEM 计划的实用性和科学效益。
研讨会:数字奴隶Ilia afanasev,Elias Moncef Bounatrou,MaximilianGrübsch,Anna Jouravel,进入21st人文科学和社会科学中的研究机会和方法发生了巨大变化。大语言模型(LLM)的培训和伯特等变压器的发展(Devlin等人2019)或GPT家族(Brown等人al 2020)影响所有语言领域,特别是自然语言的处理(NLP),而斯拉夫语言学也不例外(请参见Nogolová等。 2023)。 本研讨会的目的是探索LLM对斯拉夫研究中问题和工作方法的影响。 Regina Guzaerova(Justus-Liebig-universitätgießen)基于语料库的分析,对俄罗斯讲俄罗斯的媒体领域的政治正确性和新道德的概念这项研究探索了俄罗斯语言媒体领域的政治正确性和新道德的概念通过全面的基于语料库的分析。 使用先进的自然语言处理(NLP)技术与传统语料库语言方法一起研究,研究了这些概念如何被列入并已在近年来在俄罗斯媒体中发展。 该研究使用各种来源的多样化和代表性语料库,包括俄罗斯报纸,在线新闻平台,博客和社交媒体,跨越2010年至2024年。 情感分析评估了公众的态度和情感色调,揭示了媒体报道的发展方式。 2。Nogolová等。2023)。本研讨会的目的是探索LLM对斯拉夫研究中问题和工作方法的影响。Regina Guzaerova(Justus-Liebig-universitätgießen)基于语料库的分析,对俄罗斯讲俄罗斯的媒体领域的政治正确性和新道德的概念这项研究探索了俄罗斯语言媒体领域的政治正确性和新道德的概念通过全面的基于语料库的分析。使用先进的自然语言处理(NLP)技术与传统语料库语言方法一起研究,研究了这些概念如何被列入并已在近年来在俄罗斯媒体中发展。该研究使用各种来源的多样化和代表性语料库,包括俄罗斯报纸,在线新闻平台,博客和社交媒体,跨越2010年至2024年。情感分析评估了公众的态度和情感色调,揭示了媒体报道的发展方式。2。这个广泛的时间范围可以详细探讨与政治正确性和新道德有关的话语中的时间动态和转变。高级NLP技术,例如命名实体识别(NER)和主题建模标识语料库内的关键实体和基本主题。话语分析认真研究了媒体对政治正确性和新道德的框架,从而强调了政治取向和媒体类型的差异。结果提供了对术语频率,分布和上下文的见解,从而提供了对公共话语的细微理解。趋势说明了这些概念的演变,并与重大的社会政治事件相关。这项研究为全球政治正确性和不断发展的社会规范的全球表现形式的研究做出了贡献。通过关注讲俄语的背景,我们阐明了这些概念如何在特定的文化和语言领域中进行本地化,有争议和重新构想。我们的发现暗示了理解跨文化交流,媒体话语分析以及与社会正义和文化变革有关的思想的全球循环。Maksim Aparovich (KNOT Knowledge Research Group, Brno University of Technology), Volha Harytskaya, Vladislav Poritski, Oksana Volchek (independent scholar, Lithuania), Pavel Smrž (KNOT Knowledge Research Group, Brno University of Technology) Towards a GLUE-type benchmark for Belarusian Recent progress in language modelling gave rise to various kinds of natural language understanding benchmarks.其中许多类似于胶水[Wang等。2020]和波兰[Rybak等。2016a]及其后代超粘合剂[Wang等。2019b];特别是,此类基准可用于俄罗斯[Shavrina等。2020],但它们尚未用于一些较小的,相对较低的斯拉夫语言,这会阻碍LLMS中多语言能力的进一步发展。本演示文稿为东斯拉夫语言是白俄罗斯语的胶合型基准。基准包括五个专注于以下任务的新型数据集:1。句子级别的情感分析。具有正性和负极性(无中性)的句子是从主题上不同的在线资源中手动选择的,这些句子反映了现代书面白俄罗斯人的现实世界多样性。命名实体识别。数据集,源自通用依赖性中的BE_HSE语料库[Nivre等。2020; Shishkina&Lyashevskaya 2021],已根据通用指南进行注释[Mayhew等。2024]。
电极微结构可以深刻影响锂离子电池的性能。在这项工作中,使用带有键合粒子模型的离散元素方法(DEM)研究了日历过程对电极微结构的影响。提出了使用X射线计算机断层扫描(XCT)表征的现实电极结构与理想的DEM结构之间的全面评估。断层扫描和DEM结构的电极结构和传输特性,即孔隙率分布,特定的表面积和曲折因子。在考虑了碳粘合剂结构域(CBD)阶段后,进一步进行电化学分析。考虑到日历的效果,可以实现层析成像和理想化结构之间的良好一致性。带有电极压缩电池的性能在日历后改善。本研究为使用DEM和电化学分析提供了基础来定量评估将来的电池性能。
摘要 对新西兰北阿什伯顿河清澈浅水砾石河段的数字摄影测量测量所获得的数字高程模型 (DEM) 质量进行了评估。使用自动校正程序处理与水下地形相关的点误差,该程序基于对空气-水界面折射的校正。还考虑了收集参数变化对 DEM 质量的影响。使用独立数据集评估水下地形 DEM 的准确度和精度。结果表明,如果将数字摄影测量与图像分析技术结合使用,可以成功用于提取砾石河床的高分辨率 DEM,但水下地形表示的质量在很大程度上取决于图像采集时的水深。有人提出,数字摄影测量表面与“实际”河床表面(由地面测量确定)之间的差异将在一定程度上反映定义砾石覆盖表面真实高程的问题。数字摄影测量测量通常会看到砾石鹅卵石的顶部,而手持测量人员则倾向于记录石头之间的高程。还讨论了误差的命名法,并得出结论,所采用的表面质量测量应与 DEM 的应用一致。
摘要 — 与农业活动相关的梯田是人类对景观最明显的改造之一,是世界各地重要的投资,它们最近与现代土地利用管理和侵蚀控制的关注产生了新的相关性。保护性农业和梯田管理是卫星地球观测和高分辨率地形测量中具有巨大潜力的应用。由于其高灵活性,昴宿星团卫星星座提供了新的高分辨率数字高程模型 (DEM),其亚米级分辨率可能对这项任务有用,它们在农田环境中的应用如今是一个开放的研究方向。这项工作提供了初步分析,从昴宿星团图像获得的 DEM 中执行自动梯田映射,并与 LiDAR DEM 进行比较。考虑了两种现有方法,快速线段检测器 (LSD) 算法和基于表面曲率的地貌测量方法。尽管 Pleiades DEM 的性能低于 LiDAR 模型,但结果表明,Pleiades 模型可用于自动检测大于 2 m 的梯田坡度,检测率超过梯田总长度的 80%。此外,结果表明,当使用嘈杂的数字高程模型时,地貌测量方法更为稳健,并且略优于 LSD 算法。这些结果首次分析了 Pleiades DEM 作为 LiDAR DEM 的替代品的有效性,也强调了未来在农田环境中监测大面积区域所面临的挑战。