3此外,与块体材料相比,单原子层状二维纳米片具有更大的表面积、线性能带结构和增强的量子耦合效应,4,5因而具有高迁移率、金属性、狄拉克-费米效应等电子特性和电导率(包括交流电导率、直流电导率、光导率和超高热导率)、优异的柔性和高机械韧性等机械特性以及电导率等磁性特性。6,7这些特性使得二维纳米片在储能、自旋电子学、光子学、电子学、传感、生物医学等领域具有潜在的应用。8,9图 1(a)中所示的其他二维化合物包括过渡金属二硫属化合物(TMD)、10,11
在电子设备结构中引入层状二维 (2D) 材料是提升电子设备性能和提供附加功能的一种有趣策略。例如,石墨烯(导电性)已用作电容器 [ 1 ] 和电池 [ 2 ] 中的电极,而过渡金属二硫属化物 (TMD),例如 MoS 2 、 WS 2 和 WSe 2(半导体性),常用作场效应晶体管 (FET) 和光电探测器 [ 3 – 5 ] 中的沟道。六方氮化硼 (h-BN) 是由 B 和 N 原子排列成 sp 2 六方晶格的二维层状材料,其带隙为 5.9 eV [ 6 ]。因此,h-BN 是一种电绝缘体,并且在许多不同的应用中非常有用。到目前为止,h-BN 已被证明是一种非常可靠的 FET 栅极电介质,并且能够比高 k 电介质更好地抵抗电应力 [7,8],因为
理论上研究了接近性诱导的自旋轨道和交换耦合对菱形三层石墨烯(RTG)相关相图的影响。通过使用Ab Initif拟合的RTG的有效模型,该模型由过渡金属二分法(自旋 - 轨道接近效应)和铁磁CR 2 GE 2 TE 6(交换接近效应),我们将库仑相互作用纳入了随机相互作用,以探索在不同的位置和不同位置的潜在相关阶段。我们发现,由旋转轨道接近效应引起的丰富的自旋瓦利分辨石头和Intervalley相干性不稳定性,例如由于存在谷化量的耦合而出现了旋转 - 瓦利 - 固定相。同样,接近交换通过偏置旋转方向来消除相位变性,从而实现了磁相关效应 - 相关相位对封装铁磁性层的相对磁化方向(平行或反平行)的强灵敏度。
在扭曲的双层系统中观察到的多样化和有趣的现象,例如石墨烯和过渡金属二核苷,引发了有关它们可能托管的新兴效应的新问题。然而,在足够大以进行光谱研究的规模上实现这些结构的实际挑战仍然是一个巨大的障碍,导致直接测量扭曲过渡金属二甲基化元素双层的电子带结构的直接测量很少。在这里,我们提出了一个系统的纳米级角度分辨光发射光谱调查,对散装,单层和扭曲的双层WS 2的光发射调查,小扭曲角为4.4°。实验结果与基于高对称方向的密度函数理论的理论计算进行了比较。出乎意料的是,电子带结构的测量表明,结构弛豫以4.4°扭曲角出现,并形成了大型,不WIST的双层区域。
过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
过渡金属二硫属化物 [1] (TMDC) 是一类具有 C-TM-C 堆积结构的新兴材料,其中 C 和 TM 分别表示硫属原子(例如 Se 或 S)和过渡金属原子(例如 Nb、W 或 Mo)。在过去十年中,TMDC 单层由于其独特的电子和光学特性而引起了广泛关注 [2–12]。此类准二维材料的六方晶体结构意味着其电子能带结构中存在不等价的 K 谷,从而产生了谷自由度和基于谷的电子功能(谷电子学)。[13] TM 原子提供大的自旋轨道耦合 (SOC),[14] 从而导致其他独特特性,例如自旋谷锁定、[15]
1 无机和分析化学,2 制药,3 无机和分析化学,维沙卡帕特南,530003,印度。摘要:纳米材料的生产和应用研究已经开展多年。由于基本元素钼和另一种化学元素硫(氧族元素)的性质不同,它们具有各种吸引人的特性。尽管我们对二硫化钼纳米粒子的成核、发展和结构所涉及的过程以及其生物特性和催化活性背后的机制的理解取得了重大进展,但仍存在许多困难。纳米材料的进化有助于在纳米级改变材料的形状和结构,以实现所需的应用。为了区分半导体相和金属相,人们开发了准二维 (Q2D) 材料,例如石墨烯和 2D 蜂窝硅,以及层状过渡金属二硫属化物 (TMD),例如二硫化钼 (MoS 2 ) (WS2)。因为它在从块体转变为纳米级时能够表现出广泛的特性。其中,二硫化钼 (MoS 2 ) 是一种有趣的多功能材料。由于其 (1.9 eV) 直线带隙值,单片 MoS 2 无疑能够实现后硅电子学。在室温下,它具有高开/关电流比和大约 200 cm 2 (Vs -1 ) 的迁移率。MoS 2 的结构也是其两个特性的决定因素。它对气体传感很有用,因为它具有六边形结构,其中 S-Mo-S 原子层共价连接,相邻的 MoS 2 层之间有范德华连接。由于 MoS 2 具有良好的特性,因此具有多种实际应用。我们力求在这篇综述中涵盖当前的合成技术及其在 2D MoS 2 材料中的应用。关键词:过渡金属二硫化物 (TMD)、二硫化钼 (MoS 2 )、二硫化钼材料的合成技术以及二硫化钼的应用。
摘要:机械应变可用于调整单层过渡金属二核苷(1L-TMD)的光学特性。在这里,从1l-wse 2薄片的上转换光致发光(UPL)用通过十字形弯曲和压痕法诱导的双轴应变调节。发现,随着施加的双轴应变从0%增加到0.51%,UPL的峰位置被大约24 nm红移。同时,对于在-157 MeV至-37 MeV之间的宽范围内的上转换能量差,UPL强度指数增加。在三种不同的激发波长为784 nm,800 nm和820 nm处的1L-WSE 2中,UPL发射在1L-WSE 2中观察到的线性和肌功率依赖性表示多音辅助的一photon photon UpConversion发射过程。1L-TMDS的应变依赖性UPL发射的结果铺平了光子上转换应用和光电设备进步的独特途径。
基于过渡金属二色元和石墨烯基于原子上的薄材料,提供了有前途的途径,以解锁异性峰中旋转厅效应(SHA)的机制。在这里,我们为扭曲的范德华异质结构开发了一个微观理论,该理论完全融合了扭曲和混乱效应,并说明了对称性破坏在自旋霍尔电流产生中的关键作用。我们发现,对顶点校正的准确处理与从流行的iη和梯子近似获得的定性和定量不同。A pronounced oscillatory behavior of skew-scattering processes with twist angle θ is predicted, reflecting a nontrivial interplay of Rashba and valley-Zeeman effects and yields a vanishing SHE for θ = 30 ◦ and, for graphene-WSe 2 heterostructures, an optimal SHE for θ ≈ 17 ◦ .我们的发现揭示了障碍和对称性破裂,作为重要的旋钮,以优化界面。