卷积神经网络(CNN)在几十年前就无法想象的表演,这要归功于采用了数百层和近数十亿个可训练的参数的非常大的模型。然而,解释他们的决策是很不困难的,因为它们是高度非线性的,并且过度参数化。此外,对于现实生活中的应用,如果模型利用数据的伪造相关性来预测预测,则最终用户将怀疑该决定的有效性。尤其是,在医学或关键系统等高风险场景中,ML必须保证使用正确的功能来计算预测并防止伪造的关联。因此,近年来,可解释的人工智能(XAI)研究领域一直在不断发展,以了解黑盒模型中的决策机制。在本文中,我们关注事后解释方法。值得注意的是,我们对反事实解释的不断增长分支(CE)[63]。ce旨在创建输入样本的最小但有意义的扰动,以更改固定预告片模型给出的原始决定。尽管CE和对抗性示例之间的观点具有一些相似之处[44],但CE的扰动必须是可以理解和合理的。相比之下,对抗性示例[37]包含与人眼无法区分的高频噪声。总体而言,CE目标四个目标:(i)解释必须使用(ii)稀疏修改,即具有最小扰动的实例。此外,(iii)解释必须是现实的,并且可以通过
扩散模型是基于马尔可夫过程的生成模型家族。在其前进过程中,他们逐渐向数据添加噪声,直到变成完整的噪声为止。在向后过程中,数据逐渐从噪声中逐渐发出。在本教程论文中,充分说明了扩散概率模型(DDPM)。详细简化了其可能性的变异下限,分布的参数和扩散模型的损耗函数。引入了对原始DDPM的一些模型,包括非固定的协方差矩阵,减少梯度噪声,改善噪声时间表以及非标准高斯噪声分布和条件扩散模型。最后,解释了噪声表位于连续域中的随机差异方程(SDE)的连续噪声时间表。
动机访谈(MI)是一种以客户为中心的咨询方式,可以解决(客户)用户的行为改变动机。在本文中,我们提出了一种针对社会互动剂(SIA)的行为产生模型,并将其应用于(MI)中的虚拟治疗师的SIA。mi为治疗师和客户定义了不同类型的对话行为。已经表明,治疗师通过调整口头和非语言行为来与客户建立融洽的关系。基于对人类MI数据集(Annomi)的分析,我们发现了治疗师和客户的面部表情与对话行为之间的共发生。此外,治疗师将其行为适应客户的行为,以偏爱融洽的关系。我们的行为产生模型嵌入了这些共发生以及这种行为适应。为此,我们建立了一个基于在Annomi语料库训练的条件扩散方法的观察框架。我们的模型学会生成以MI对话行为和客户的非语言行为为条件的虚拟Thera-pist的面部表情。我们旨在通过使用用户的行为来使SIA在类似治疗的互动中更有效(即对话行为和用户和代理的非语言行为)以推动SIA行为。
示例:VAE /扩散模型•True P*(x 0)是在拍摄的照片上分发并发布到Flikr•选择Pθ(x 0)作为表达模型(例如< / div>可以生成图像
扩散张量成像(DTI)是磁共振成像(MRI)的高级方式,它扩展了扩散加权成像(DWI)的能力。DWI测量水扩散信号,DTI利用来自多个扩散方向的数据来绘制大脑中水分子的三维扩散,从而使其微观结构组织的评估。源自DTI的密钥指标包括分数各向异性(FA),它反映了白质微结构的完整性;平均扩散率(MD),这表明了总水扩散的大小,并且与细胞密度和细胞外空间有关。和径向扩散率(RD),代表垂直于轴突纤维的扩散,与髓磷脂状况相关[1]。dTI已应用于神经康复领域,研究报告了基于白质分析[2-4],其效用在预测中风和创伤性脑损伤后的运动和功能恢复方面。此外,DTI已用于调查神经退行性疾病的白质变化[5-7],并提供了一种定量方法来评估细微的微结构变化,而常规MRI很难检测到这些变化[8,9]。
摘要这项研究调查了使用创新(DOI)框架的扩散的学生拥有的数字平台,该数字平台连接了投资者以及由学生拥有的微型,中小型企业(MSME)。这些发现突出了Gemah在提供针对Z Gen Gen企业家的数字偏好量的高效且可访问的资金方面的优势。但是,挑战仍然存在于首次用户至关重要的信息清晰度。可尝试性促进了用户信心,但缺乏证词和案例研究限制了信任,并且该平台的早期开发阶段限制了可观察性。此外,监管和基础设施差距强调了大学和OJK等金融机构的机构支持的重要性。这项研究表明,通过与教育机构的监管保证和协作来提高Gemah的功能,提高透明度并促进用户信任。Gemah具有潜力,可以作为金融包容性的可持续解决方案和印度尼西亚学生MSME的增长。
理解和建模照明效应是计算机视觉和图形中的基本任务。经典的基于物理的渲染(PBR)准确模拟了光线传输,但依赖于精确的场景表示形式 - 说明3D几何,高质量的材料和照明条件 - 在现实世界中通常是不切实际的。因此,我们介绍了一种iffusion r Enderer,这是一种神经方法,该神经方法解决了整体框架内的反向和正向渲染的双重问题。杠杆功能强大的视频扩散模型先验,逆装置模型准确地估算了现实世界视频中的G-buffers,为图像编辑任务提供了一个接口,并为渲染模型提供了培训数据。相反,我们的重新设计模型从G-buffers产生了无明确的光传输模拟的影像图像。具体来说,我们首先训练一个视频扩散模型,用于构成综合数据的反向渲染,该模型可以很好地推广到现实世界的视频,并使我们能够自动化不同标签的真实世界视频。我们
摘要。扩散模型已成为生成建模的强大框架。该方法的核心是分数匹配:在不同尺度上,数据分布的嘈杂版本的对数密度的学习梯度。当使用经验数据而不是人口损失评估评分匹配中采用的损失函数时,最小化器对应于时间依赖的高斯混合物的得分。但是,使用此分析可牵引的最小化器会导致数据记忆:在无条件和条件设置中,生成模型都返回训练样本。本文包含对记忆潜在的动力学机制的分析。分析强调了避免重现分析可牵引的最小化器的正规化的必要性;而且,这样做的基础是对如何正规化的原则理解。数值实验研究了:(i)Tikhonov正则化的特性; (ii)旨在促进渐近一致性的正则化; (iii)通过训练神经网络的神经网络的参数不足或提早停止引起的正常化。这些实验是在记忆的背景下评估的,并突出了未来正规化发展的方向。
a b s t r a c t generativ e Adveranial网络(GAN)经常用于天文学中来构建数值模拟的模拟器。然而,培训甘斯可能会被证明是一项不稳定的任务,因为它们容易出现不稳定,并且经常导致模式崩溃问题。相反,扩散模型还具有在没有对抗训练的情况下生成高质量数据的能力。它在几个自然图像数据集方面表现出了优势。在这项研究中,我们通过一组来自散射变换的强大摘要统计数据进行了降级扩散概率模型(DDPM)(DDPM)(DDPM)(DDPM)(最坚固的gan类型之一)之间的定量比较。特别是,我们利用这两个模型来生成21 cm亮度温度映射的图像,作为一个案例研究,基于天体物理参数有条件地研究,这些参数与宇宙复离的过程相关。使用我们的新fr`echet散射距离(FSD)作为e v aluation指标,以定量比较生成模型和仿真之间的样本分布,我们证明了DDPM在各种训练集的大小上都优于stylegan2。通过Fisher的预测,我们证明,在我们的数据集中,StyleGAN 2以各种方式崩溃,而DDPM产生了更强大的生成。我们还探讨了无分类指导在DDPM中的作用,并仅在训练数据受到限制时才显示出对非零指导量表的偏好。我们的发现表明,扩散模型在生成准确的图像中提供了一种有希望的替代品。这些图像随后可以提供可靠的参数约束,尤其是在天体物理学领域。
