线性回归是一种简单而强大的技术:它提供了可解释的系数,其渐近性能是完善的和已知的。无疑是使用财务数据时的默认模型,但是它的简单性变成了在高维环境中的弱点(参见GU,Kelly和Xiu(2020),Christensen,Siggaard和Veliyev(2023))。依靠标准线性回归率,在高维设置中很少有解释变量会引起无尽的设计组合,并最终导致无数结论,而金融的新时代(由大规模数据集和增加的计算能力控制)使这个问题加剧了问题。因此,我们认为朝着高维方法和数据驱动的方法迈进在某种程度上是不可避免的。本文展示了通过将资金和理论与现代统计和计算技术相结合的知识和理论来进行高维度推论的可能性。利用
•缓冲区在减轻农药喷雾漂移风险中起着至关重要的作用,尤其是在靠近敏感的栖息地或区域应用时。为了有效地减少潜在的喷雾漂移的影响,涂抹器应维持指定的喷雾缓冲区区域,即处理过的侧面边缘(施用农药的区域)和敏感栖息地之间的区域。•此缓冲液是一个无喷雾区,可防止影响非目标区域,确保喷雾不会污染水体,野生动植物栖息地或其他敏感环境。重要的是要注意,缓冲区在不同的活性成分,配方,应用方法和靠近最近敏感栖息地的情况下可能会有所不同。有关特定缓冲区要求的详细信息可以在农药产品标签上找到。•害虫管理监管机构(PMRA)提供了一个喷雾缓冲区计算器,涂药者可以使用该机构来计算其特定农药应用和当地条件所需的适当缓冲尺寸。对于那些希望准确确定缓冲区尺寸的人至关重要,允许更精确的应用,同时仍然最大程度地减少漂移风险。可以在农药施用器的喷雾缓冲区计算器上找到更多信息-CANADA.CA。
扫描电子显微镜与能量色散 X 射线光谱法 (SEM-EDS) 相结合是一种应用广泛的元素微分析方法。硅漂移探测器 (SDD) 的集成显著增强了 EDS 性能,由于其灵敏面积大、输出电容低,因此能够精确识别元素。对 SDD 的精确模拟可以提供洞察力,使未来模型的设计和优化成为可能,而无需昂贵且耗时的实验迭代。此外,当前基于模型的 EDS 应用量化方法已达到其最大预测精度。因此,创建更精确的模拟模型可以帮助在这些量化模型中实现更高的精度,这对所有 EDS 应用都具有极大的价值。考虑到这一目标,基于 Geant4、Allpix Squared 和 COMSOL Multiphysics 开发了一个用于在 EDS 中建模 SDD 的模拟框架。模拟涵盖整个物理流程,包括目标样品的特征 X 射线发射及其在探测器中的吸收。探测器内产生的电荷载体通过 SDD 的内部电场传播,并测量它们各自的电荷贡献以模拟 EDS 光谱。模拟模型与现有文献和内部实验测量结果进行了比较,在 SDD 调整良好的情况下显示出很强的一致性。讨论了模拟框架的局限性,并探索了进一步的研究以提高准确性和速度。关键词:X 射线光谱、硅漂移探测器、扫描电子显微镜、探测器模拟
1. 钻石晶体的常见形态 ................................................................................................................................ 1 2. 钻石稳定场 ................................................................................................................................................ 3 3. 世界原生和次生钻石矿床地图 ................................................................................................................ 4 4. 含钻石围岩的年龄范围 ............................................................................................................................. 7 5. 金伯利岩岩浆系统的理想模型 ............................................................................................................. 9 6. 横截面显示的岩孔-根区关系 ............................................................................................................. 9 7. 钾镁辉岩岩浆系统的理想模型 ............................................................................................................. 11 8. 安大略省与碱性岩、碳酸盐岩和金伯利岩侵入岩相关的主要区域构造 ............................................................................................. 15 9. 线间距在航空磁测中的重要性 ............................................................................................................................. 17 10. 金伯利岩的正地面重力异常 ............................................................................................................................. 18 11. 金伯利岩的负地面重力异常金伯利岩........
摘要:全球动态和不确定的商业环境导致组织之间的竞争加剧。这是由多种因素造成的,其中包括创新和技术变革、全球化、人口结构变化、客户需求和偏好的演变以及供应链动态。竞争加剧影响了企业绩效,许多组织未能实现计划的战略。企业必须了解和解决战略漂移问题,才能实现卓越和持续的绩效。企业绩效可能会受到战略漂移的影响。战略漂移是战略管理的一个概念,指的是组织在经历不断变化的环境时的反应,它被发现会通过管理惰性导致组织竞争优势下降、运营成本增加、创新和市场适应性下降,从而对组织绩效产生负面影响。这项研究的总体目标是回顾有关战略漂移的文献,以期突出适合作为未来研究工作基础的知识空白。具体而言,本研究回顾了现有的关于战略漂移及其相关现象的概念和理论文献,回顾了关于企业绩效及其相关现象的构造的相关实证文献,从所审查的文献中确定了新出现的概念理论和实证差距,并针对已确定的差距提出了一个合适的理论框架,以指导未来的研究。本研究以路径依赖理论、组织学习理论、约束理论、动态能力理论和开放系统理论为基础。对领导自满、营销短视、逻辑渐进主义和组织承诺以及企业绩效进行了实证研究。最后,本研究针对已确定的差距提出了一个合适的概念模型,并指导未来关于战略漂移及其相关现象对企业绩效的研究。本研究的结果对企业高层管理人员具有重要意义,因为它们将帮助他们理解战略漂移的概念及其对绩效的影响,从而能够制定战略,实现企业的竞争优势和卓越绩效。
虽然 AST 推力平衡器目前的状态已经超出了其设计目标,但它还有进一步改进的潜力,以实现更高的分辨率和更低的噪音。从我们的角度来看,机械结构似乎尚未达到极限。目前,AST 正在构建基于非常相似的机械设计的推力平衡器的新版本,它将具有改进的电子元件。目前,音圈致动器能够产生从 -1.8 N 到 1.8 N 范围内的力,固有分辨率为 16 位,通过插值技术略有增强。新版本的推力平衡器将使用分辨率更高的组件,因此在高达 1 N 的整个测量范围内表现出更好的性能。此外,还将开发一种专用于推力噪声测量的新型音圈电流源。它仅覆盖较小的推力范围,从而显着提高分辨率并降低此特定应用的噪音。在目前的状态下,推力平衡电子设备仅由标准型部件组成。在全新改进的电路设计的关键部分使用低噪声部件也有望显著降低整体本底噪声。作为一项附加功能,新型推力平衡器将配备第二个独立的现场校准装置,该装置基于物理原理而非音圈致动器。因此,这种新装置与现有的第二个音圈致动器相结合,将提供两种独立的现场校准方法,从而实现绝对推力测量的高精度。
本文提出了一种以人为中心的代理AI的方法,作为使用现实世界中DCT预测和预防数据漂移的新颖解决方案,可耐磨设备和传感器的可用数据集。在这种方法中,对不断发展的数据模式进行连续监测以保护临床试验结果的完整性。,它会在纠正机制和切割机器学习方法的帮助下自动最大程度地减少人类干预措施,同时允许快速响应数据分布中可能出乎意料地发生的变化。我们概述了实施过程,描述我们的方法与经典数据质量管理技术之间的比较,并概述了一些挑战,包括监管问题和偏见 - 需要克服。这些结果表明,使用代理AI可以显着提高数据可靠性,从而提高了新的途径,以获得更准确有效的DCT。
达拉斯·伊索姆的文章《中途岛战役:日本人为何失败》[《海军战争学院评论》,2000 年夏季,第 60-100 页] 值得称赞,因为它使用了日本资料,并提出了有趣的观点。我们特别赞赏伊索姆对日本幸存者的采访,这些采访为日本飞机重新武装程序提供了新的有用信息。这些新数据对于准确叙述 1942 年 6 月 4 日早晨在日本航母上发生的事情至关重要。但是,我们认为,矶教授的论点似乎过于依赖对日本通信的相当僵化(且极具争议)的解读:即南云忠一中将究竟何时收到由利根号巡洋舰发射的 4 号侦察机的传输。此外,虽然矶教授的重新武装信息(他认为这是南云未能在遭到致命攻击前发动反航母打击的关键)对于了解日本方面的战斗情况显然很重要,但我们认为他的作战分析还不够深入。因此,我们不能接受他的结论。在矶教授撰写本文时,我们正在重新评估和改写日本对中途岛的叙述,这是我们自己对加贺号航母残骸进行鉴定的结果。 1 我们方法的一个关键部分是建立一个日本航母打击部队的精确作战模型。正如我们将展示的那样,
船舶的六个自由度 ................................................ ..船舶轴线相对于 Eanh 轴线的相对位置 .................................. .涌浪力与涌浪速度之间的图形关系 阻力曲线的图形表示 ................................ .螺旋操纵的图形表示 ................................ ..舵角和角速度图的绘制:(A)动态稳定船舶 ............................................................. ..舵角和角速度图的绘制:(B)动态不稳定船舶 ............................................................. .. GZ 曲线的图形表示:(A)静态稳定船舶 ............................................................. .GZ 曲线的图形表示:(B)静态不稳定船舶 ................................................................ .. 推力曲线的图形表示 ................................................ ..动态稳定船舶的 Kemf Zig zag 机动 动态不稳定船舶的 Kemf Zig zag 机动 ............................................................................................................. .阻力曲线的图形说明 ............................................................................. .比例模型阻力曲线的图形表示 .. .. 纵向拖曳时舵处于攻角的模型方向 ............................................................................. ..显示测量的偏航力矩和舵角的图表 ............................................................................................. .显示测量的摇摆力和舵角的图表 ...... .比例模型阻力曲线图 ................................ ..攻角模型方位图:(A)舵与模型中心线对齐 ........................ .攻角模型方位图:(B)舵与拖曳水池中心线对齐 ........................ .. JL/测量比例模型图示:偏航力矩与摇摆速度图 ........................ .测量比例模型图示:摇摆力与摇摆速度图 ................................ ..平面运动机构图示 ................................ .船首和船尾之间相位差为零的模型轨迹 ............................................................................................. .PM M 下模型的正弦路径...................................... ..模型的旋转臂运动................................................ ..显示测量的摇摆力与角速度的关系的图表............................................................................................. .显示测量的偏航力矩与角速度的关系的图表............................................................................................. ..
温度对剂量测量的影响是固态剂量计的主要限制因素。对于 PIN 光电二极管剂量计尤其如此,因为其暗电流与温度呈指数相关。为了尽量减少这种影响,提出了一种补偿方法,该方法依赖于二极管结构本身,而无需外部传感器或设备。在辐照期间,光电二极管定期从反向极化切换到正向极化,以确定设备的温度。该测量基于二极管在恒定电流下工作时温度与正向电压之间的线性依赖关系。开发了一种实现此程序的电子电路,用于实验表征 BPW34S Si PIN 光电二极管对辐射的响应。所提出的程序将热漂移引起的不确定性降低了 7.5 倍。此外,测量的平均剂量率灵敏度为 12 ± 2 nC/cGy,在 6 MV 光子束下进行的 21.4 Gy 辐照周期中灵敏度下降低于 2%。我们已经证明,pn结可以成功地用于补偿温度对剂量测量的影响。