摘要:在1990年代后期首次提出了在特定区域上的微小传感器的分布,称为一种称为智能灰尘的概念。几项努力主要集中在计算和网络功能上,但迅速遇到了与电源,成本,数据传输和环境污染有关的问题。为了克服这些局限性,我们建议使用基于纸张的(五彩纸屑样)化学传感器来利用化学试剂的固有选择性,例如比色指标。在这项工作中,由纤维素制成的廉价和可生物降解的被动传感器可以成功地表明存在有害化学物质,例如强酸,通过重大的颜色变化。连接到无人机的传统彩色数码相机可以轻松地从安全距离检测到这一点。处理收集的数据以定义危险区域。我们的工作介绍了智能粉尘概念,化学感应,基于纸张的传感器技术和低成本无人机,可在高风险场景中对危险化学物质的灵活,敏感,经济和快速检测。
该项目将通过合并现场测量,实验室分析,高级数值建模和健康暴露评估来回答研究问题。在该项目结束时,研究团队将确定Playa尘埃中可能关注的潜在污染物,确定与暴露于这种尘埃相关的潜在健康影响,提供脆弱的社区以减少其暴露量,并估算未来的暴露和潜在健康风险将如何改变未来,并将针对机构提出对机构进行降低公众健康的目标的目标。项目团队将合作与居住在萨尔顿海区社区的人们参与研究活动。这项工作的公共利益将在与尘埃相关的健康风险方面创造更有信息的社区,
范围:此说明适用于所有俄勒冈OSHA。参考文献:请参阅附录H背景:在该指令目的指定的行业中,尘埃泛滥,其他火灾和爆炸危害已由俄勒冈州OSHA的几项标准和《俄勒冈州安全就业法》涵盖。尘埃泛滥会在正确的灰尘颗粒悬浮在空气中悬浮,然后暴露于足够的点火源以引起灰尘的点火(燃烧)时,就会发生灰尘。如果feflagration处于限制区域,则存在爆炸电位。这些材料也可能引起其他火灾。可燃灰尘通常是有机灰尘,或者是金属灰尘,它们被细化成很小的颗粒。在受影响区域中可能积累的尘埃的实际数量可能会因空气移动,粒径或其他数量的其他因素而有所不同。
高级研究职位(Assegno di Ricerca)与Creutzfeldt – Jakob病CJDF结合使用了Modena大学和Reggio Emilia。ottimizzazione del deliveral cervello da nanoparticelle di una porfirina porfirina tetracationica con potenti attentiattivitàantivitàantivitàantiaTiCA。该项目旨在分析针对Prions疾病的活性卟啉,该疾病已经证明在体外具有治愈作用,并且其对靶向已经建立的G7和其他BBB靶向配体的抑制作用,以提高其大脑的靶向效率,以提高体内治疗和治疗性治疗。该项目将使用NMR用新型卟啉分析溶液中的靶向肽,以确定哪些部分是结合并抑制表面修饰的NMED的靶向能力。将进行进一步的实验,以验证新的BBB靶向肽,以避免这种抑制作用,并测试其靶向聚合物纳米颗粒中孢子蛋白靶向大脑的卟啉的能力。
车辆清洗和/或表面清洗可以替代车轮清洗机,前提是此类车辆清洗和/或表面清洗的喷嘴喷水量至少为 40 磅/平方英寸 (psi),符合车轮清洗机的定义(即,能够清洗车辆每个车轮的整个圆周),操作方式可以清除洗车后车辆每个车轮整个圆周上的可见沉积物,安装、维护和使用符合本规则第 307.6(a)(1)-(6) 节中的标准,并且已在设施的 D CP 中获得批准。
ESD 簸箕和长柄扫帚,用于 EPA 环境中的清洁。高品质、耐用,银色和哑光黑色饰面。本产品采用防静电原材料、无涂层表面制成,使其具有持久的 ESD 性能。适用于 ESD 敏感区域和洁净级环境,如微电子、生物和医学领域等。我们的 ESD 簸箕和扫帚是整理工作场所/办公室的理想选择,配有盖子。大多数簸箕和扫帚都是由高静电绝缘材料制成的,这些材料可能会转移到附近的静电敏感物品上并可能损坏它们。为了保护您的 EPA 免受 ESD 损坏,请使用我们的防静电簸箕和扫帚。
根据阿尔特弥斯计划,NASA 计划重返月球表面,这次是长期停留。阿波罗任务认为尘埃是月球表面作业面临的主要挑战。这包括从一点到另一点的旅行。人们一直在努力开发防止尘埃进入设备、使设备更耐尘和改善除尘效果的技术。然而,长时间在尘埃环境中有效运行仍然是一个悬而未决的问题。在这里,我们探讨了使用缆车、缆车和高空滑索在尘埃之上进行设备和材料转移以及人员远足。讨论了优缺点、潜在架构、推进和材料。还介绍了融入正在进行的阿尔特弥斯计划的步骤。
人行道必须从与公众可进入的区域的交点开始,并延长至少100英尺的中心线距离,最小宽度为20英尺。至少100x20英尺路面必须位于公众无法进入的区域。请注意,路面定义为施加和维护的沥青,混凝土或其他与道路表面(即沥青混凝土,混凝土路面,碎屑密封或橡胶沥青)的材料。
II. Introduction P lasmas that contain solid particulates (grains) much more massive than the ions present are usually referred to as “dusty plasmas” and are encountered in many fusion/laboratory and industrial plasmas and combustion processes, as well as in the space environment [ 1 , 2 ]. The electrodynamical interactions among dust grains and plasmas can strongly influence the behavior of plasma devices such as tokamak and industrial combustion reactors. Previous efforts have been put into both microscopic dust charging and macroscopic dust transport scales. For instance, at the microscopic (grain) scale, particle-particle, particle-mesh (P3M) approach has been used to study charging process of micro-meter sized grains in low temperature plasmas [ 3 ]. The Particle-in-Cell (PIC) - Monte Carlo Collision (MCC) approach was used for plasma particles while the PIC - Molecular Dynamics (MD) approach was used for Coulomb interactions among the dust grains. Results show that the amount of charge on the dust grain Q d could be on the order of Q d / e ∼ 3000-7000 negative ( e is the elementary charge) within the sheath. Other grain-scale charging models include a “patched charge model” using the capacitance of an isolated spherical dust grain and empirical constants based on experiment data, predicting the Q d on the order of Q d / e ∼ 10 4 [ 4 ], and a test-particle approach supercharging model using a boundary-element-based surface charging method with a multipole electric field solver, predicting the Q d on the order of Q d / e ∼ 10 2 [ 5 ] under similar plasma conditions to the patched charge model. The stochastic charging nature at the grain scale also leads to charge fluctuations [ 6 ], heating [ 7 ], and oscillations [ 8 – 10 ]. At the macroscopic (device/system) scale, electrodynamical