摘要:随着先进制造对精确微型和纳米级图案的不断增长的要求,迫切需要对EBL过程的优化。当前的优化方法涉及GA与GWO或PSO与GWO等组合,而GWO与不良的探索 - 探索折衷折衷相困难,因此融合到次优溶液或溶液的不足。通过创新的自适应狼驱动的蜂群进化方法克服了上述挑战,使GA,PSO和GWO的优势协同以进行EBL的优化过程。从GA中产生多样化的解决方案人群是AWDSE的开始,以确保搜索空间中的广泛探索。此外,使用GWO的基于角色的分类将解决方案分层分类为不同的角色:Alpha,Beta,Gamma,Delta。的解决方案(Alpha,beta)通过基于PSO的更新来完善,这些更新通过更新解决方案来利用搜索空间,而解决方案排名较低(Gamma,delta)则受到GA驱动的交叉和突变操作,以维持多样性和探索。GA的进化操作与PSO粒子更新之间的自适应切换肯定是由GWO的领导动力驱动的,GWO的领导动力可以使多样化强化的更密集平衡,从而可以提高收敛精度和速度。实验结果证明,AWDSE能够提高约18%的临界维度,而延迟时间的收缩率达到12%,效果超过了GA-GWO和PSO-GWO的传统方法。这一进步强调了AWDSE可以显着提高EBL效率和准确性的可能性,而远离纳米制造过程的景色却越来越快。
摘要 - 基于Algan的深紫外线发光二极管(DUV LED)的外部量子效率(EQE)由于电子泄漏的主要问题而远非令人满意阻塞层(P-EBL)可以在该界面附近诱导电子积累和孔耗尽,从而导致电子泄漏并阻碍孔注入。在本文中,我们提出了在LQB和P-EBL之间插入的Al-Composition Increasing Algan层(ACI-ALGAN),以增强DUV LED的载体注入能力,通过调节LQB/EBL界面和下层机制在LQB/EBL界面上调节偏振产生的表电荷产生的床单,并通过数字计算分析。插入结构可以消除LQB的P侧界面处的正电荷,并在P-EBL的N侧界面附近诱导孔积累,这随后可以减少电子泄漏和偏爱孔注射。提出的带有ACI-Algan层的DUV LED结构表现出增强的EQE 45.7%,其正向电压保持不变。此设计方案可以提供另一种方法来促进使用各种应用程序的DUV LED的性能。
最近,具有 25 nm T 栅极的 InP 基高电子迁移率晶体管 (HEMT) 已被证明可在 1.1 THz 下放大 [1],这使得传统电子设备在太赫兹应用方面比光学设备更具竞争力。尽管积极推动 T 栅极的占用空间变得更短以实现更高的工作频率现已成为热门研究课题,但针对 100 nm 以下 T 栅极的稳健且经济高效的 T 栅极工艺仍然是行业的首要任务。在本文中,我们将展示格拉斯哥大学在超短 T 栅极工艺开发方面的最新进展。该工艺涉及在 PMMA/LOR/CSAR 三层 EBL 光刻胶堆栈上进行单次电子束光刻 (EBL) 曝光。通过仔细控制光刻胶厚度、电子束剂量以及适当的显影剂和显影时间,我们开发了一种可靠且稳健的工艺,用于具有各种脚和头长度的 T 栅极。图 1 显示了 GaAs 半绝缘基板上典型 T 栅极的扫描电子显微镜 (SEM) 图像。与最先进的 T 门工艺[3][4]相比,新工艺具有多项优势,并且有可能将 HEMT 的 THz 操作占用空间进一步缩小至 20 纳米以下。我们将在会议上更详细地阐述该工艺。
在本项目中,我们研究了在半活性自适应结构中使用可变刚度/可变强度结构元素的使用,采用双重方法来实现概率。在由NFP 62资助的项目中,我们研究了介电材料,以实施多层结构的静电层压,在一个并行项目中,由ETH的结构技术中心资助,我们已经确定了上述结构概念,这些结构概念可以利用上述元素来实现新的和有用的功能,以实现新的和有用的结构,并将其与特定的机翼结构相关联。这两个平行项目的努力是从相当早的阶段进行了协调的,旨在在高性能,轻质结构的结构演示者中实施电键粘合层压板(EBL的目的)。本项目的第一个成就是对与当前应用相关的聚合物膜的性质的详细研究:介电常数,介电强度和体积电阻率。这第一步是决定性地研究介电材料的框架,以便为其用于EBL应用的资格,这是决定性的。也很快就清楚了,也从对介电材料进行的研究也很快,即使在该项目的范围中包括材料合成,也不太可能实现介电强度和介电常数的同时增加。这些发现的相关性远远超出了用于EBL应用的电介质的优化。我们的注意力很快就针对对分层介质的调查,基于溶液的调查,通过其他小组的观察来证实,由其他群体进行的观察结果证实,由多层组成的电介质会提供介电强度的介电功能,而不是在材料和应有的材料中造成的材料不可避免地会导致一个不可避免的介绍性,并且是否会增加材料的范围,并且应有的可能性 - 应有的可能性,而应有的可能性,那么它是应有的,如果是应有的含量,那么它是不可避免的。用于制备多层介电。关于材料有效介电特性的问题很快就会出现,并且在项目的第一阶段获得的高近DC领域的介电和绝缘材料的知识清楚地表明,该材料的教科书近似是无限量电阻的完美介电性,这将无法适当地表示问题。因此,开发并通过实验验证了多层膜的介电响应的模型,该模型也考虑了组件的有限体积抵抗力。开发的分析模型代表了优化高能介电膜以不同频率应用的高能介电膜的基础。高压直流电网的未来开发将需要开发可靠的固体绝缘材料。多层电介质可以很好地代表一类有趣的介电和绝缘元素。此类投资从未在此细节上进行。结果也相对于此外,显然需要有效地撞击多层绝缘层层上静电场层的理解,这显然是必要的,以了解导致高场上此类材料系统失败的机制。在项目的最后一部分中,详细研究了EBL元素的机械性能,该元素与与项目结构分支的合作框架中所设想的结构应用有关的负载案例进行了详细研究。
编程:精通Python,Pytorch,Tensorflow,Java,JavaScript,C/C ++,MATLAB用于机器学习,多模式模型,计算机视觉,图像分割,数据增强,回归分析,回归分析,量子计算。仿真和设计:Lumerical(FDTD/RCWA),COMSOL,KLAYOUT,ZEMAX,LABVIEW,ANSYS-FEA,SOLIDWORKS,AUTOCAD。设备制造:6年的洁净室经验在Nanodevice原型设计和制造方面:过程优化,石版画(EBL,UV暴露),蚀刻(Ribe,Ibe,Ibe,ICP,湿蚀刻),AFM/SEM/SEM/SEM/SEM/显微镜光学表征。
摘要牛白血病病毒(BLV)是一种逆转录病毒,在牛中引起牛牛白细胞病(EBL),并且在包括日本在内的许多国家 /地区广泛。最近的研究表明,在BLV感染期间,免疫抑制性分子(例如造成的死亡-1(PD-1)和PD-rigand 1)的表达在免疫抑制和疾病进展中起着至关重要的作用。此外,一项初步研究表明,另一种免疫抑制性分子T细胞免疫球蛋白结构域和粘蛋白结构域-3(TIM-3)参与BLV感染期间的免疫抑制。因此,本研究旨在进一步阐明免疫检查点分子在BLV感染中的免疫抑制作用。tim-3表达在BLV感染的牛中外周cD4 1和CD8 1 T细胞上上调。有趣的是,在EBL牛中,CD4 1和CD8 1 T细胞在纤维化淋巴瘤中表达了TIM-3。TIM-3和PD-1在来自BLV感染的牛的外围CD4 1和CD8 1 T细胞中上调并共表达。通过抗牛TIM-3单克隆抗体阻断了T细胞和伽马干扰素(IFN-G)产生的CD69表达,来自BLV感染的牛的外周血单年透明细胞的产生。合成构成测定也证明了TIM-3阻断对BLV感染的抗病毒作用。与仅抑制相比,TIM-3和PD-1途径的综合抑制显着增强了IFN-G产生和抗病毒效率。总而言之,TIM-3和PD-1途径的封闭阻滞显示出强大的免疫激活和抗病毒作用,并且具有作为BLV感染的新型治疗方法的潜力。
大米是一种全球种植的农作物,是人口的重要食物来源,但它也是食物链污染砷(AS)的最简单途径。AS AS无机形式,砷[AS(V)]和砷[AS(iii)],是土壤中发现的物种的剧毒,并且最容易被根吸收。AS(V)在有氧土壤中的吸收在厌氧土壤中受到青睐。AS(V)在根中转换为(III),尽管少量As(V)也保留在植物器官中。根系是两种形式作用的第一个目标。AS(V)和AS(III)的作用机理仍然是未知的。理解它们对于选择具有较低容量的AS摄取和运输到Caryopses的稻米基因型至关重要,从而提高了食品安全性。生长素是根系开发和可塑性所需的植物激素,其作用是由内源性/外源性腕足激素(BRS)调节的,主要是在应力条件下。研究的目的是加深对AS(III)或AS(v)在水稻根中触发的机制的了解,并特别关注生长素运输与BRS之间的相互作用所起的作用。我们表明,AS(iii)是水稻根中存在的主要物种,而不论AS(III)或AS(V)形式如何提供给生长培养基的形式。砷在不定的根和横向根中都改变了生长素的分布,但在后者的根部都有很大的分布。此外,在存在AS的情况下,EBL会增加根中根中的抗氧化活性,但仅在与AS(V)结合时。与AS(III)或AS(V)相结合的外源BR 24-纤维氨基醇(EBL)的应用大大增加了与生长素传输有关的Ospin2和Osaux1基因的表达,从而有助于恢复正确的生长素分布,从而恢复AS,以及(III)的效果(III),并效果更高的效果。
•清洁室环境中的纳米级装置制造•电子束光刻(EBL)和光刻图•低温传输测量•真空系统,薄膜沉积(热和电子束蒸发),•半导体材料/设备的电气表征(由I-V和C-V概率)(I-V和C-V概率)(I-V和CRAM)•SEMRANT和SERTARCER•SEMRASS(SEM),X,X,X,X,X,X,X,x,x,x,x,x,x,x,x,x,x,x,x,x,x,即使用空间电荷光谱(如DLTS)进行表征•使用能量离子修改材料性能•软件包:Labview,起源研究指南博士学位:2•基于离子辐照硅的当前运输的研究研究指导,基于离子辐射的Schottky屏障结构(2021)(2021)的Hemant Chaurasia•基于Nanowire的Hemant Chaurasia•NANOWIRE NOMBATIRE ELECTORITE ELLECERITE DED ELLELYTE DED ELLETRERN DED•2022222222222222221222222122222222年2月202位。进度:2
首尔,2024年4月4日,RWE被韩国贸易,工业和能源部的495兆瓦(MW)电力业务许可(EBL)授予,以开发位于韩国Chungchegcheongnam省沿海沿海沿海沿海沿海大约45公里的Seohae Offshore Wind Project。该许可将自2021年在首尔开设办事处以来,将RWE授予RWE的首个韩国海上风能的独家开发权。EBL的奖励是允许公司在韩国发电和供电的强制性要求,是RWE在开发其第一个韩国海上风力项目中的重要里程碑。这与公司的更广泛活动息息相关,以加强与当地社区,行业和该市场中的合作伙伴的关系。RWE Offshore Wind首席执行官SvenUtermöhlen SvenUtermöhlen:“第一个电力业务许可证是我们SEOHAE OFFSHORE WIND项目进一步发展的关键里程碑。 作为RWE,我们致力于提供清洁,可持续的可再生能源,并帮助实现韩国可再生能源目标。 我们要感谢韩国政府和当地利益相关者对我们的信任并支持我们的项目。 ” RWE可再生能源韩国将与当地社区和Taean县紧密合作,为该地区的可再生能源提供贡献,并提供长期的福利,包括为当地社区,行业和供应商创造就业机会和机会,后者是RWE在离岸风开发的核心。 作为全球行业领导者,RWE管理着大型国际海上风电场投资组合的运营和维护。SvenUtermöhlen:“第一个电力业务许可证是我们SEOHAE OFFSHORE WIND项目进一步发展的关键里程碑。作为RWE,我们致力于提供清洁,可持续的可再生能源,并帮助实现韩国可再生能源目标。我们要感谢韩国政府和当地利益相关者对我们的信任并支持我们的项目。” RWE可再生能源韩国将与当地社区和Taean县紧密合作,为该地区的可再生能源提供贡献,并提供长期的福利,包括为当地社区,行业和供应商创造就业机会和机会,后者是RWE在离岸风开发的核心。作为全球行业领导者,RWE管理着大型国际海上风电场投资组合的运营和维护。SEOHAE项目开发的下一步是与当地供应商合作,继续工程和环境影响评估研究,与当地县和韩国电力公司(KEPCO)互动,以计划和确保网格连接协议。rwe在开发,建立和运营海上风力项目方面有着良好的20年历史记录 - 与社区并驾齐驱,以提供当今和几代人的可持续性,经济福利。
在这项工作中,我们报告了一种新颖的技术,用于直径小于30 nm的纳米木制造技术,其长宽比大于20,而制造面积不受限制。更重要的是,可以同时制造具有多个直径的纳米柱。在我们的技术中,图案是由电子束光刻(EBL)编写的,在离子耦合等离子体(ICP)蚀刻期间,铬(Cr)lm被沉积为硬膜。在Cr边缘发生的天线效应会导致较小的硬面膜,因此随后可以形成直径较小的纳米膜。由于我们的技术独立于底物材料,因此它也可以应用于其他半导体材料,从而在许多领域中提供了有希望的应用。此外,还提供了基于本文中制造的纳米阵列的SERS模拟,以揭示拉曼频谱强度增强的起源。