这是2023年4月25日在Boulder的美国国家标准技术研究所(NIST)举行的混合工作组会议的报告。工作组专注于极端的紫外线光刻(EUVL)研究,开发和制造。会议允许就EUVL的许多技术方面进行有效的讨论。行业参与者进行了演讲,这些演讲有助于将本报告的概述告知科学的现状,挑战,需求和未来在EUVL加速创新的机会。该报告还包括有关NIST的一些努力的信息,这些努力可以开始或继续支持美国半导体行业。在工作组会议上凝聚力介绍了NIST的一些研究和能力,为外部利益相关者提供了知名度和发表评论的机会。这次会议对于学习NIST的研究能力的行业参与者很有见识。反过来,NIST的研究人员对行业的需求有了更深入的了解,以确定NIST的计量专业知识可以帮助进行EUVL研究。会议和本报告并非也不是要捕捉EUVL行业的整个观点,而是作为讨论起点。未来的工作包括扩大参与度,磨练NIST研究子组满足EUVL的特定需求,并执行在工作组会议或任何未来会议中讨论的优先研究。通过与美国EUVL行业的参与,希望创建有针对性的研究合作,加快半导体制造创新并为美国纳税人带来有意义的价值。
1.引言在摩尔定律的驱动下,半个多世纪以来半导体产业一直致力于缩小特征尺寸。最近,13.5 纳米极紫外光刻 (EUVL) 技术已经应用于 5 纳米节点 HVM。由于目前 0.33 NA 的限制,EUVL 无法分辨小于 13 纳米线/线距的特征。与 EUVL 相比,定向自组装 (DSA) 表现出高达 5 纳米 L/S 的极精细分辨率,被视为亚 10 纳米甚至亚 5 纳米特征尺寸的潜在图案化技术[1-9]。最近,含金属 EUV 光刻胶已被开发用于提高超薄 EUV 光刻胶膜的抗蚀刻性[10,11]。最近,我们的研究小组报道了一系列具有氟化嵌段的 BCP,经过中等温度下 1 分钟的热退火后迅速形成亚 5 纳米域[12,13]。我们假设氟化侧链对超精细分辨率和图案化速度起着关键作用。然而,由于薄膜超薄,抗蚀刻性是 5 纳米以下 DSA 材料的主要问题。
ே[1],可以通过缩短光源的波长,改善数值孔径Na并减少过程组合参数来实现光刻的分辨率比。duvl和euvl是光刻技术的两种主要类型。DUVL包括浸入式DUVL和干型DUVL。浸入式DUVL使用ARF作为其光源,其暴露波长为134nm。及其相应的Na为1.35。最先进的沉浸式DUVL可以在7NM技术模式下以及光刻方法的创新使用。将镜头和晶圆之间的空间浸入液体中。液体的反射指数大于1,因此激光的实际波长将大大减少。纯化的水是最常用的,反射指数为1.44。ASML生产了Twinscannxt:2000i在2018年,这是最新一代的Immersion Duvl。其光源的波长为193nm,它的分辨率比将其提高到38nm,并将线宽度降低到7〜5nm。它可用于产生300毫米晶圆。覆盖精度是两个光刻过程之间模式的注册准确性,该图案基于Pauta标准(3σ标准),并影响产品的产量,Twinscannxt:2000i的覆盖精度为1.9nm。它可以每小时生产275块晶圆。干型DUVL还使用ARF作为其照明源,波长仅限于193nm。,其Na为0.93。EUVL的波长仅为13.5nm,其Na为0.33。euvl在生产期间具有明显的优势,复杂性twinscannxt:1460k是最新一代的干duvl,在65nm技术模式下用于半导体市场的基本末端,可生产300毫米晶圆,具有205 WPH的生产率。euvl不需要多次曝光,它只能通过一次暴露才能实现精致的模式。
首批 0.55NA 极紫外光刻工具继续朝着生产方向发展,没有出现 0.33NA EUVL 引入后出现的延迟和技术差距。0.33NA 成熟模块和技术的延续在可预测性和进度方面提供了预期的好处,而专注于创新变形光学器件的资源已实现与工具设计和计划应用一致的系统级像差和光刻胶成像性能。同时,在大批量生产中大量使用 0.33NA EUVL 所维持的健康生态系统支持了在英特尔 14A 工艺节点上引入 0.55NA EUVL 所需的掩模、光刻胶、底层、蚀刻、检测和计量方面的逐步增强。在此节点引入可避免使用 0.33NA EUV 进行过多的多重图案化,并且在正面金属间距与背面功率输送共同优化时尤其有益。随着初始引入的生态系统的建立,我们已经开始着手改进,例如 6x12 掩模格式,以充分利用高 NA 平台的生产力潜力,同时通过消除考虑大型芯片平面图中芯片拼接位置的需要来简化设计。最后,人们越来越乐观地认为,远远超过 0.55NA 的数值孔径在技术上是可行的,尽管仍在继续努力为开发“超 NA”生产工具提供商业依据。
极紫外光刻 (EUVL) 是一种集成电路 (IC) 制造技术 [1]。该技术使用波长为 13.5 nm 的 EUV 光将光掩模 (也称为掩膜版) 上的图案转移到晶圆上的感光光刻胶上 [2]。鉴于 IC 特征尺寸 < 20 nm,> 20 nm 掩膜版表面上的任何颗粒都会导致印刷图案缺陷 [3]。因此,控制这些纳米颗粒的释放和传输对于 EUVL 至关重要 [4]。EUVL 过程 [5] 在低压氢气环境中进行,以防止镜子氧化和碳生长。EUV 辐射的吸收会导致 EUV 诱导氢等离子体的形成。它由两部分组成:快光电子(E∼70eV)和体等离子体(ne∼108cm−3,Te∼0.5eV)。快电子和等离子体都会给它们能够到达的表面充电。有多项实验[6–8]报道,具有相似参数的等离子体和电子束可以从表面掀起灰尘颗粒。1992年,Sheridan等人[6]观察了介电灰尘从一个被氧化层覆盖的铝球上脱落,该铝球同时暴露在等离子体和电子束中。根据报道的假设(后来得到扩展[9]),粒子被等离子体带电,并被等离子体鞘层的电场掀起。2006年,Flanagan和Goree[7]对一个被风化层覆盖的玻璃球重复了Sheridan的实验,得到了同样的灰尘脱落现象。王等人 [8] 研究了在等离子体、电子束、它们的组合和紫外线辐射的影响下,风化层颗粒堆的浮起。根据已开发的“贴片电荷模型”,电子渗透到颗粒之间的空腔中,借助二次电子发射给隐藏的表面充电,然后
极紫外光刻 (EUVL) 是最有前途的技术之一,它可将半导体器件制造的极限扩展到 50 纳米及以下的临界尺寸 [1]。EUVL 需要制造反射掩模,它不同于紫外可见光光刻技术所用的传统透射掩模。极紫外 (EUV) 掩模由一个 EUV 波长的反射镜组成,反射镜上沉积了吸收图案堆栈。干涉镜由高折射率和低折射率材料的交替堆栈制成,通常是沉积在基板顶部的 40 个 Mo/Si 双层。通过调整 Mo 和 Si 层的厚度,可以针对 13.5 纳米的波长优化反射率。对于“双层工艺” [2],吸收图案堆栈由缓冲层顶部的导电吸收层制成,缓冲层用作蚀刻停止层以及吸收层修复步骤中的保护层。过去几年,人们评估了多种材料(Ti、TiN、Al-Cu、TaSi、Ta、TaN、Cr)[2–4] 作为 EUV 掩模的导电吸收材料的可能性。图 1 描述了这种基本的减法 EUV 掩模工艺流程,其中采用了“双层”吸收堆栈。
极紫外光刻 (EUVL) 技术基础设施的开发仍然需要许多领域达到更高水平的技术就绪状态。需要引进大量新材料。例如,开发 EUV 兼容薄膜以采用经批准的 EUVL 光学光刻方法需要以前没有的全新薄膜。为了支持这些发展,PTB 凭借其在 EUV 计量方面 [1] 的数十年经验 [2],在带内 EUV 波长和带外提供了广泛的光化和非光化测量。两条专用的、互补的 EUV 光束线 [3] 可用于辐射度 [4,5] 特性分析,分别受益于小发散度或可调光斑尺寸。EUV 光束线 [5] 覆盖的波长范围从低于 1 nm 到 45 nm [6],如果另外使用 VUV 光束线,则可以覆盖更长的波长。标准光斑尺寸为 1 毫米 x 1 毫米,可选尺寸低至 0.1 毫米至 0.1 毫米。单独的光束线提供曝光设置。过去曾采用 20 W/cm 2 的曝光功率水平,通过衰减或失焦曝光可获得较低的通量。由于差分泵送阶段,样品可以在曝光期间保持在定义的气体条件下。我们介绍了我们用于 EUV 计量的仪器和分析能力的最新概述,并提供了数据以供说明。
EUV 光刻技术是解决先进技术节点关键尺寸的主流技术,目前处于 18nm 及以下的范围内 [1]。EUVL 首次应用于制造领域,利用的是化学放大光刻胶 (CAR) [2]。在 ArF 和 ArF 浸没式光刻中,CAR 的过滤(无论是在本体还是在使用点 (POU))已证明对减少微桥起着重要作用,主要是通过去除硬颗粒和凝胶 [3-6]。对于 ArFi,EUV 带来了新的挑战,不仅要达到所需的线条粗糙度、灵敏度和分辨率,还需要大幅减少线条塌陷、微桥和断线等缺陷。在这项研究中,它展示了利用新型 POU 过滤来调节微桥和实现卓越启动行为的能力,这两者对于实现大批量制造的 EUVL 都至关重要。在由 TEL CleanTrack LITHIUS Pro-Z 和 ASML NXE:3400B 组成的 imec EUV 集群上测试了不同的 POU 过滤器。通过测量冲洗溶剂体积与 19nm 大小的缺陷之间的函数关系来评估启动性能,结果表明可以快速达到稳定的基线。使用市售光刻胶进行的光刻实验旨在降低晶圆缺陷率,实验结果一致表明,在 16nm L/S 测试载体上,光刻胶显影后 (ADI) 和光刻胶蚀刻后 (AEI) 微桥显著减少。讨论了膜物理固有设计和新型清洁对 POU 设备的影响。关键词:EUV 光刻、微桥、POU 过滤