尽管泵浦技术已经变得更小,但许多钛宝石系统需要单独的泵浦系统(或更大的集成泵浦系统,通常在 532nm 下运行),因此这些系统通常不是很紧凑。如果它们紧凑,功率往往会相应较低。钛宝石系统在 800nm 下以峰值效率运行,功率通常在这里引用。它们具有一系列可运行的波长,具体取决于制造商。标准范围是 650-1040nm,有时会扩展到 1100-1300 或仅从 680nm 或 700nm 开始。系统通过光学器件(通常是端镜和棱镜/标准具设置)的移动进行调整,以使特定波长穿过增益介质。功率输出在光谱调谐曲线上并不相同(代表性曲线如下所示)。掺镱光纤激光器(例如 Chromacity 1040)的工作原理是使用泵浦二极管(通常为 980nm)激发掺镱光纤,该光纤具有掺杂芯,可充当激光增益介质。然后将输出限制在激光器的小芯内。在许多传统应用领域,光纤激光器因其众多优势而开始取代钛宝石系统。在 Chromacity 1040 系统中,在系统内部创建了一个锁模腔,一侧是光纤,另一侧是输出耦合镜。然后使用透射光栅(工厂设置)压缩或拉伸来自此的输出,以使客户能够在 100fs 和 1.5ps 脉冲宽度之间进行选择。由于此定制选项,Chromacity 1040 具有自由空间输出(不是光纤)。
喜马偕尔邦科学、技术和环境委员会 (HIMCOSTE) 成立于 1986 年。它是印度政府科技部下属设立的全国性邦级科技委员会网络的一部分。旨在推动整个邦的科技干预,并与中央部委在科技领域进行协调。喜马偕尔邦是一个多山的喜马拉雅邦,地势高大,气候条件恶劣,生物多样性丰富,为科技干预提供了广泛的机遇,以改善其居民的社会经济和生计选择。委员会在科技的各个领域都有很大的工作潜力,可以为邦的发展做出重大贡献。自成立以来,HIMCOSTE 一直与印度科学技术部 (DST)、太空部 (DoS)、环境、森林和气候变化部 (MoEF&CC)、新再生能源部 (MNRE) 等积极合作。已实施和开展了多项计划。从利用空间技术、传播科学技术应用、科普、保护知识产权、可持续利用生物多样性、环境保护到气候变化,印度国务院充当着知识中心,为印度政府提供政策解决方案。尤其是为整个社会。作为其最新项目的一部分,印度国务院在 Anandpur、Shogi 设立了科学学习和创造力中心。CSLC 科学博物馆一方面提供了促进科学学习的机会,另一方面激发了孩子们形成创造性想法的机会。
喜马偕尔邦科学、技术与环境委员会 (HIMCOSTE) 成立于 1986 年。它是印度政府科技部下属的全国性邦级科技委员会网络的一部分,旨在推动全邦的科技干预并与中央各部委在科技领域进行协调。喜马偕尔邦是一个山地邦,地势高峻,气候条件恶劣,生物多样性丰富,为科技干预提供了广泛的机遇,有助于改善居民的社会经济状况和生计选择。委员会在科技的各个领域都有很大的工作潜力,可以为该邦的发展做出重大贡献。自成立以来,HIMCOSTE 积极与印度科技部 (DST)、太空部 (DoS)、环境、森林与气候变化部 (MoEF&CC)、新再生能源部 (MNRE) 等合作,实施并开展了多项计划。从利用空间技术、传播科学技术应用、科普、保护知识产权、可持续利用生物多样性、环境保护到气候变化,印度国务院充当着知识中心的角色,为印度政府乃至整个社会提供政策解决方案。作为其最新举措的一部分,印度国务院在 Anandpur、Shogi 设立了科学学习与创造力中心。CSLC 科学博物馆一方面提供了促进科学学习的机会,另一方面激发了孩子们发挥创造力。
富含库仑结合的准粒子的物理学,例如激发剂和过渡金属二甲基元素单层中的trions,目前在冷凝的物质群落中正在进行深入研究。这些准颗粒在100 MEV的顺序上具有较高的结合能,表现出强烈的光耦合,并且可以将量子信息存储在自旋valley自由度中[1]。实现超快时间标准上激素状态的外部控制的策略已成为重要的研究途径。在这里,我们报告了在HBN封装的Mose 2单层中观察到瞬态Trion到脱位的转换(图1a)是由在红外自由电子激光设施(Felbe)(Felbe)[2,3]产生的Picsecond TimeScales上的强烈Thz脉冲引起的。随后通过用条纹摄像头记录时间分辨的光量(TRPL)光谱来监测激子动力学。可见的脉冲(= 400 nm)激发了激动的激子和Trions的种群(图1b,无脉冲脉冲的trpl光谱)。通过在大约30次皮秒延迟后添加THZ脉冲相对于可见的激发(图1C),我们观察到Trion发射的淬火和激发激素发射的暂时增亮。此外,通过调整Thz脉冲的频率,我们记录了TRIONS的THZ解离光谱(图1d)。重要的是,当THz光子能量等于或高于Trion结合能时,可以观察到有效的Trion TRION转换。在其他机构中观察到THZ辐射的相似影响,例如WSE 2单层和Mose 2 /WSE 2异质结构。总的来说,结果为低维材料中的许多粒子状态的外部控制开辟了有希望的途径。
在这样的日子里,当大海平静无波时,一群群旅行者坐在甲板上,注视着两边的海岸。它们彼此相距多近啊,欧洲最南端和非洲最北端之间只有九英里的距离!也许它们曾经汇合在一起,形成一条山脉,将大海与海洋分隔开来。但自从屏障被打破后,海水就以不可抗拒的力量冲了过去。从船的一侧望去,我们注意到洋流正在向东流去,如果不是它从不回头的话,这并不会让人感到惊讶。地中海是一片无潮汐的海洋:它不会涨落,而是不断地向同一方向倾泻巨大的水量。地理学家告诉我们,这是大自然的安排,以补充大海东端蒸发量更大的废物。但这只能让我们部分满意,因为当这股洋流在水面上流动时,还有另一股洋流,尽管可能更微弱,但它在相反的方向流动。在数百或数俄丈深的深海中,一条隐蔽的墨西哥湾流正回流到海洋的怀抱中。这种洋流系统是我们尚未完全理解的奥秘之一。似乎有一种灵魂不仅在水面上移动,而且在水中移动;仿佛深海是一个活的有机体,它的涨落就像人体血液的循环。或者我们应该说,这条上层洋流代表着生命之流,如果不是在深海深处,过剩的生命被黑暗中流淌的死亡之水所缓解,这条洋流似乎会过满?
通过卫星激发的电磁波和通过轨道驱动的波(Soimow)的测量值(SOIMOW)的测量来检测到一种称为空间对象识别的技术。具有等离子波的空间对象的接近度测量可能允许在传统上通过光学望远镜和雷达范围传感器实现的正常检测阈值以下的空间碎片。soimow使用原位等离子体接收器来识别轨道结合过程中的空间对象。卫星和其他空间对象穿过200到1000公里的高度之间的近地层,由电子收集和阳光下的照片发射引起电荷。这些超音速,带电的物体激发了各种血浆波。SOIMOW技术表明,可以观察到来自已知物体的电磁等离子体波到数十公里的范围,从而提供有关存在空间对象的信息。Soimow概念已用蜂群卫星上的无线电接收器仪器(RRI)证明。RRI数据的幅度,光谱和极化变化与电磁,压缩alfvén波的一致,这些电磁波是由跨磁场线传播的带电空间对象发射的。此外,可以通过较低的杂化漂移或离子声波不稳定性产生空间对象处的静电波。正在研究原位电场探头和对散射卫星波的远程检测,以确定轨道物体的位置。
宽频段晶体中的抽象缺陷中心对它们在光电和传感器技术中的应用中的潜力引起了人们的兴趣。然而,众所周知,由于钻石,碳化硅或氧化铝的高度绝缘晶体中的缺陷,由于其较大的内部耐药性,因此很难电气兴奋。为了应对这一挑战,我们意识到了基于十六角硼(HBN)的碳中心的垂直隧道连接处令人兴奋的缺陷范式。通过Van der Waals技术的设备的合理设计使我们能够升高和控制与缺陷到波段和intradefect的电致发光有关的光学过程。对隧道事件的基本理解是基于HBN中的谐振缺损状态之间电子波函数振幅转移到石墨烯中金属状态的,这导致由于组成材料的不同条带结构而导致电子特性的巨大变化。在我们的设备中,通过隧道通路的电子衰变与辐射重组竞争,由于特征性隧道时间在屏障的厚度和结构上具有显着的敏感性,导致载体动力学的可调性程度。这使我们能够实现Intrade的过渡的高耐高率电激发,超过了几个数量级,因此在子兰段式方案中光激发的效率。这项工作代表了通用且可扩展的平台的显着进步,用于使用宽带间隙晶体中的缺陷中心的电动设备,其特性通过在设备工程水平上激活不同的隧道机制进行调制。
电气工程职业规划选修课(2022-2023 目录年之前)您毕业后会立即开始在工业、政府部门或非营利组织工作,还是会申请研究生课程(硕士、博士、法学、工商管理硕士、医学院)?我们认识到,很难决定和计划未来几十年您将参与什么以及作为一名专业人士做什么。考虑一下是什么驱使您;您的兴趣和热情可以影响您的决定。从事无线通信或电力系统或射频 (RF) 系统的工作让您感到兴奋吗?还是微电子学或控制或信号完整性?这些问题的答案可以帮助您决定选修哪些课程。您可能已经参与或正在参与与教师的研究,或者可能已经在公司或政府实验室实习过。这些经验可以帮助您决定电气工程领域的专业领域。您可能还希望通过选修一些不一定是工程或科学的其他学科的课程来拓宽您的知识范围和机会。这些课程可以是金融、管理、营销等。根据您选择的专业,您将选择您的职业规划选修课程。如果您愿意,您可以从 ELCT 课程列表中选择所有职业规划选修课程(所有编号为 430 及以上的 ELCT 课程)。您还可以选择在部门批准的情况下修读 300 级或更高级别的非 ELCT 课程,最多 6 个学分。
光合作用是由太阳的单个光子1-3引发的,作为弱光源,在叶绿素吸收带1中,每秒最多每秒几十个光子每秒传递几十个光子。在过去的40年中,在过去的40年中,许多实验和理论工作探索了在光合作用中吸收光合作用的事件,从而吸收了强烈的超短激光脉冲2-15。在这里,我们使用单个光子在环境条件下激发了紫色细菌的紫obacter sphaeroides的轻度收获2(LH2)复合物,分别包含9和18个细菌氯植物分子的B800和B850环。B800环的激发在大约0.7)ps中导致电子能量转移到B850环,然后在约100-FS的时间尺度上快速B850至B850 Energy Transfers在850–875时(参考)NM(参考)。16–19)。使用宣传的单光子源20,21以及一致计数,我们建立了B800激发和B850 Fuoresence发射的时间相关函数,并证明这两个事件都涉及单个光子。我们还表明,每个检测到的插入光子光子的概率分布支持这样一种观点,即吸收后单个光子可以驱动随后的能量传递和实现发射,因此,通过扩展,光合作用的主要电荷分离。一个分析随机模型和蒙特卡洛数值模型捕获了数据,进一步缔结了单个光子的吸收与自然光收获复合物中单个光子的发射相关。
血液中高水平的氨水可能导致无意识和抽搐,这使其成为危险空气污染的主要例子。我们环境中某些气体的存在可能会令人不安。鉴于这些问题,我们提出了一种当代设计和开发异常敏感的氨气传感器的方法。该传感器利用由单模纤维(SMF),光子晶体纤维(PCF)和SMF组成的底物来创建Mach-Zehnder干涉仪(MZI)。感应机制涉及固定AU和GO纳米复合材料。在此设置中,SMF和固体晶体纤维之间的干扰区域会产生一个塌陷区,该区域可用于激发PCF的核心和覆层模式。这种创新技术确保了非常快速的响应和恢复时间。这项研究中展示的可重复使用的探针具有实现快速,高度准确且可重复可重复的超级氨检测的巨大潜力。这引入了进行在线测量和环境监测的新颖途径。SMF和固体晶体特色纤维的交点会产生一个有效激发PCF的核心和覆层模式的塌陷区域,从而导致了承诺的快速响应和恢复时间。可重复使用的探针表现出能力迅速检测到氨的超级量,并具有良好的选择性,并具有良好的选择性,并具有良好的选择性,并具有良好的特征,并提高了18.6的敏感性和敏感性。关键字:氧化石墨烯,干涉仪,氨,气体传感器这一开发为环境监测和实时测量提供了新的可能性,从而改善了对周围环境的见解。