CRISPR(成簇的规律间隔的短回文重复序列)为基因编辑提供了一种精确而强大的工具,彻底改变了基因工程。切割和修改特定 DNA 区域的能力在医学、农业和生物技术等领域具有巨大的潜力。然而,与任何技术一样,CRISPR 也存在挑战——尤其是在脱靶效应方面,即基因组的非预期部分被改变。为了应对这些挑战,人工智能 (AI) 发挥着越来越重要的作用,提高了基于 CRISPR 的基因编辑的准确性、效率和可预测性。本文探讨了 AI 和 CRISPR 如何协同工作以改善基因编辑结果,并讨论了这种动态组合的未来潜力 [1]。
本方案描述了如何将由纯化的 Cas9 核酸酶与化学修饰的合成单向导 RNA (sgRNA) 组成的核糖核蛋白 (RNP) 复合物递送至标准永生化细胞系(粘附或悬浮)。尽管针对 HEK293(人胚胎肾 293 细胞)进行了优化,但本方案可能适用于许多其他细胞系(例如 A549、U2OS、HeLa、CHO、MCF-7)。RNP 递送是使用 Lipofectamine™ CRISPRMAX™ 转染试剂完成的。化学修饰的 sgRNA 旨在抵抗核酸外切酶的降解并防止可能导致细胞死亡的先天性细胞内免疫级联。本方案可用于转染 EditCo 的多向导基因敲除试剂盒。
静默突变 – 突变不会改变多肽的氨基酸序列(这是因为某些密码子可能编码相同的氨基酸,因为遗传密码是退化的)错义突变 – 突变改变多肽链中的单个氨基酸(镰状细胞性贫血症是一种由单一替代突变改变序列中的单个氨基酸而引起的疾病)无义突变 – 突变产生过早的终止密码子(信号,让细胞停止将 mRNA 分子翻译成氨基酸序列),导致产生的多肽链不完整,从而影响最终的蛋白质结构和功能(囊性纤维化是一种由无义突变引起的疾病,尽管这并不总是唯一的原因)
意义/影响 我们的工作展示了 FoMV 介导的高粱植物基因组编辑,并强调了改进这种方法的机会,以生成具有针对性修改的后代植物,而无需组织培养或反复转化。这项创新可以大大推进育种计划和开发具有增强特性的优良高粱品种,用于人类食品、牲畜饲料、工业应用和可再生燃料的生物能源作物。
肺中的基因组编辑具有提供治疗蛋白的长期表达以治疗肺遗传疾病的潜力。虽然将CRISPR的有效输送到肺部仍然是一个挑战。NIH体细胞基因组编辑(SCGE)con-正在开发用于疾病组织中基因组编辑的安全有效方法。由财团成员开发的方法由SCGE小型测试中心独立验证,以建立严格和可重复性。我们已经开发了并验证了双重腺相关病毒(AAV)CRISPR平台,该病毒支持了小鼠肺气道中Lox-Stop-Stop-Stop-lox-Tomato Reporter的有效编辑。在进行AAV血清型5(AAV5)的分型链球菌Cas9(SPCAS9)和单个指南RNA(SGRNA)后,我们观察到19% - 26%的番茄阳性细胞,包括俱乐部和纤毛粘性的上皮细胞类型。这个高效的AAV输送平台将有助于研究肺部和其他组织类型中的治疗基因组编辑。
(a)说明了ICCR2:Ruby和ICCR2质粒的方案。两个质粒都包括OSACT启动子(紫色)下的179个BAR基因和Zmubi 180启动子(绿色)下的GRF4-GIF1嵌合体。红宝石盒包括CYP76AD1,DODA和GT基因,181被2A肽隔开,均在CAM35S启动子下。lb和rb分别表示左侧和182个T-DNA区域的右边界。183(b)使用ICCR2(左)或ICCR2:Ruby(Ruby(右))转化小麦Calli(Ruby)的再生184(c)RT-PCR分析转基因T0植物的RT-PCR分析BAR(995 185 BP)和GRF4-GIF1(1233 bp)基因的BAR(995 185 BP); wt;野生型,PC;阳性对照(ICCR2质粒),NC; 186阴性对照(水)。187(d)用ICCR2(左)和ICCR2转换的转基因小麦线:Ruby(右)。Ruby在植物的所有部分中表达188,包括尖刺和根。189(e)大麦转型。用ICCR2:Ruby质粒转化导致红愈伤组织190但较低的再生(左),不含191的iCCR1:Ruby质粒的转化,不含191的Ruby质粒,含有GRF4-GIF1嵌合体,导致了高再生速率和转基因植物。192 193淘汰红宝石盒194
来源:基因编辑是在农业生物技术中很重要,它提供了精确的方法它用于植物、鱼类和动物的育种,以提高农产品的质量和产量。据粮农组织 (2022) 称,这项技术有助于提高农作物产量。改善营养并增强对环境的适应能力。基因编辑有助于实现这一点。进行精确调整比传统育种更多,这可能有助于减少在亚太地区开发新菌株或品种所需的时间和成本由于时间、成本和市场要求,转基因作物的接受度有限。基因编辑可能特别有益,因为它的开发成本和加工成本较低对于发展中国家来说,这项技术是一种替代方案,可以帮助改良农产品,满足国家的需求。帮助解决安全问题食品和营养,考虑到社会、经济和环境可持续性的影响
。CC-BY 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 12 月 4 日发布。;https://doi.org/10.1101/2024.12.03.626493 doi:bioRxiv 预印本
摘要 本研究调查了全球 669 名植物科学家,以了解哪些物种(基因编辑的哪些结果)、哪些地方(哪个大洲)和哪些作物(哪些作物)最有可能从 CRISPR 研究中受益,以及是否就农业商业化应用的具体障碍达成共识。此外,我们还对公共和私人植物科学家进行了分类,以了解他们对 CRISPR 研究未来的看法是否存在差异。我们的研究结果表明,玉米和大豆有望从 CRISPR 技术中受益最多,而真菌和病毒抗性是最常见的实施手段。总体而言,植物科学家认为消费者的认知/知识差距是阻碍 CRISPR 应用的最大障碍。尽管 CRISPR 被誉为一种可以帮助缓解粮食不安全和提高农业可持续性的技术,但我们的研究表明,植物科学家认为消费者对 CRISPR 的看法存在一些很大的担忧。