6.1 简介..................................................................................................................................................................................................................................................................100
摘要 - 在本文中,我们提出了一种使用机器人臂控制弹性可变形物体形状的一般统一跟踪方法。我们的方法是通过在对象周围形成晶格,将对象与晶格结合,并跟踪和宣誓晶格而不是对象的宣誓。这使我们的方法完全控制了3D空间中任何一般形式的弹性变形对象的变形(线性,薄,体积)。此外,它将方法的运行时复杂性与对象的几何复杂性相分解。我们的方法基于可行的(ARAP)变形模型。它不需要已知对象的机械参数,并且可以通过大变形将对象驱动到所需的形状。我们方法的输入是对象表面的静止形状的点云,并且在每个帧中由3D摄像头捕获的点云。总的来说,我们的方法比现有方法更广泛地适用。我们通过多种形状和材料(纸,橡胶,塑料,泡沫)的弹性变形物体进行了许多实验来验证方法的效率。实验视频可在项目网站:https://网站上找到。Google。com/view/tracking-servoing-apphack。
数字微弹性平台是含有含有液体的固定固体胶囊。这些平台可以是由固体壳封装的液滴,也可以是包含由聚合物基质制成的珠子的液体。壳或聚合物矩阵充当保护性屏障,可将污染物降至最低,从而影响封装含量的功能。此外,可以设计壳或矩阵以变得透明和半渗透,允许光穿透,气体交换和分子分解。13 - 15因此,这些平台代表了包括微藻在内的各种细胞类型的封装和生长的有利环境。最近,我们的团队成功地尝试捕获和培养液体大理石内部的微藻细胞 - 典型的数字微弹性弹药平台,其带有微/纳米颗粒制成的多孔壳。通过用二氧化硅纳米颗粒包含含微藻的水滴,我们创建了一个具有透明和多孔外层的显微镜光生反应器,在5天培养期内可在细胞密度增加30倍。16此外,聚合物基质(例如水凝胶)已用于微藻固定和随后的培养。水凝胶珠可以通过与周围培养基的有效气体和营养交换来为可持续的细胞生长提供稳定的环境。这些此外,鲁棒的水凝胶三维基质在培养期间将微藻细胞固定在珠子中,最大程度地减少了细胞泄漏到周围环境中的风险,并促进了有效的细胞检索过程。
摘要。零知识证明(ZKP)是一个加密原始的原始性,使卖者能够说服一个陈述是真实的,而无需透露任何其他信息以外的任何其他信息。由于其强大的功能,其最实用的类型,称为零知识简洁的非交互性知识论据(ZKSNARK),已被广泛地部署在各种隐私性的应用程序中,例如加密货币和可验证的计算。尽管最新的zksnarks对于verifier来说是非常有效的,但供个人的计算开销仍然是数量级,而无法在许多应用中保证使用。该开销源于几个耗时的操作,包括大规模矩阵矢量乘法(MUL),数字理论变换(NTT),尤其是构成最大比例的多尺度乘法(MSM)。因此,需要进一步提高效率。
通过提高深度学习工作负载的利用率来降低成本是云提供商的关键杠杆。我们推出了 Singularity,这是微软的全球分布式调度服务,可高效可靠地执行深度学习训练和推理工作负载。Singularity 的核心是一种新颖的工作负载感知调度程序,它可以透明地抢占和弹性扩展深度学习工作负载,以提高利用率,而不会影响它们在全球 AI 加速器(如 GPU、FPGA)中的正确性或性能。默认情况下,Singularity 中的所有作业都是可抢占、可迁移和动态调整大小(弹性)的:实时作业可以动态且透明地 (a) 被抢占并迁移到不同的节点、集群、数据中心或区域集,并从抢占点准确恢复执行,以及 (b) 在给定类型的不同加速器集上调整大小(即弹性地扩大/缩小)。我们的机制是透明的,因为它们不需要用户对其代码进行任何更改,也不需要使用任何可能限制灵活性的自定义库。此外,我们的方法显著提高了深度学习工作负载的可靠性。我们表明,使用 Singularity 可以获得效率和可靠性的提升,而对稳态性能的影响可以忽略不计。最后,我们的设计方法与 DNN 架构无关,并且可以处理各种并行策略(例如数据/管道/模型并行)。
摘要 脑电图 (EEG) 因其出色的时间分辨率和较差的空间分辨率而被应用于情绪识别。这导致大多数基于 EEG 的情绪识别模型强调利用时间特征而忽略了空间分辨率提供的有效信息。为了提取更具信息量的表示,我们提出了一种用于情绪识别的弹性图 Transformer 网络 (EmoGT),其灵感来自 Transformer 在时间序列分析方面的优势和图卷积网络在拓扑分析中的卓越性能。此外,通过采用专门设计的结构,它可以灵活扩展以应对多模态输入。在 3 个公共数据集上的实验结果表明,我们的模型在单模态和多模态情况下平均比最新结果高出 3%,表明了同时利用时间和空间信息的有效性。
我们展示了量子退火方法在确定形状记忆合金和其他材料中的平衡微结构方面的用途和优势,这些材料具有相干晶粒与其不同马氏体变体和相之间的长程弹性相互作用。在对一般方法进行一维说明之后,该方法需要以伊辛汉密尔顿量的形式来表示系统的能量,我们使用晶粒之间的远距离相关弹性相互作用来预测不同转变特征应变的变体选择。将计算结果和性能与经典算法进行比较,表明新方法可以显著加快模拟速度。除了使用简单的长方体元素进行离散化之外,还可以直接表示任意微结构,从而允许快速模拟目前多达数千个晶粒。
摘要 机翼结构的刚度方向已成为飞机设计优化的一部分。A350 XWB 和波音 787 等飞机主要由此类复合材料组成,其刚度方向可以优化。为了进行这种刚度优化,这项工作的目的是修改和优化线性应力-应变关系。因此,胡克定律被多线性公式取代,以分析机翼结构上的任何非线性弹性结构技术。用于研究非线性行为的机翼结构是从中程和远程飞机配置中推导出来的。这些机翼采用扩展梁法进行分析,并与 VLM 解决方案相结合以计算气动弹性载荷。所提出的梁法能够分析任何多线性机翼结构技术。递减的结构行为显示出减少弯矩的良好潜力,而弯矩是结构重量的主要驱动因素之一。
5。Yetisen,又名等,光子水凝胶传感器。生物技术进步,2016年。34(3):p。 250-271。6。Zhang,D。等人,从设计到刺激反应性水凝胶应变传感器的应用。材料杂志化学杂志b,2020。8(16):p。 3171-3191。7。ionov,L。,基于水凝胶的执行器:可能性和局限性。今天的材料,2014年。17(10):p。 494-503。8。Cheng,F.-M.,H.-X. Chen和H.-D.李,水凝胶执行器的最新进展。 材料杂志化学杂志b,2021。 9(7):p。 1762-1780。 9。 Hu,L。等人,利用刺激反应性聚合物的动力。 高级功能材料,2020年。 30(2):p。 1903471。 10。 li,J。和D.J. Mooney,设计用于控制药物输送的水凝胶。 自然评论材料,2016年。 1(12):p。 1-17。 11。 Sun,Z。等,基于水凝胶的受控药物输送用于癌症治疗:评论。 Molecular Pharmaceutics,2019年。 17(2):p。 373-391。 12。 SOOD,N。等人,药物输送和组织工程中的刺激性反应性水凝胶。 药物交付,2016年。 23(3):p。 748-770。 13。 Koetting,M.C。等人,刺激反应性水凝胶:理论,现代进步和应用。 材料科学与工程:R:报告,2015年。 93:p。 1-49。 14。 刘,Z.,W。Toh和T.Y. 15。Cheng,F.-M.,H.-X.Chen和H.-D.李,水凝胶执行器的最新进展。 材料杂志化学杂志b,2021。 9(7):p。 1762-1780。 9。 Hu,L。等人,利用刺激反应性聚合物的动力。 高级功能材料,2020年。 30(2):p。 1903471。 10。 li,J。和D.J. Mooney,设计用于控制药物输送的水凝胶。 自然评论材料,2016年。 1(12):p。 1-17。 11。 Sun,Z。等,基于水凝胶的受控药物输送用于癌症治疗:评论。 Molecular Pharmaceutics,2019年。 17(2):p。 373-391。 12。 SOOD,N。等人,药物输送和组织工程中的刺激性反应性水凝胶。 药物交付,2016年。 23(3):p。 748-770。 13。 Koetting,M.C。等人,刺激反应性水凝胶:理论,现代进步和应用。 材料科学与工程:R:报告,2015年。 93:p。 1-49。 14。 刘,Z.,W。Toh和T.Y. 15。Chen和H.-D.李,水凝胶执行器的最新进展。材料杂志化学杂志b,2021。9(7):p。 1762-1780。9。Hu,L。等人,利用刺激反应性聚合物的动力。高级功能材料,2020年。30(2):p。 1903471。10。li,J。和D.J.Mooney,设计用于控制药物输送的水凝胶。自然评论材料,2016年。1(12):p。 1-17。11。Sun,Z。等,基于水凝胶的受控药物输送用于癌症治疗:评论。Molecular Pharmaceutics,2019年。17(2):p。 373-391。12。SOOD,N。等人,药物输送和组织工程中的刺激性反应性水凝胶。药物交付,2016年。23(3):p。 748-770。13。Koetting,M.C。等人,刺激反应性水凝胶:理论,现代进步和应用。材料科学与工程:R:报告,2015年。93:p。 1-49。14。刘,Z.,W。Toh和T.Y. 15。刘,Z.,W。Toh和T.Y.15。ng,软材料力学的进步:综述了水凝胶的大变形行为。国际应用机制杂志,2015年。7(05):p。 1530001。Huang,R。等人,智能材料组成型模型的最新进展 - 水凝胶和成形记忆聚合物。国际应用机制杂志,2020年。12(02):p。 2050014。16。Quesada-Pérez,M。等,凝胶肿胀理论:古典形式主义和最近的方法。软件,2011年。7(22):p。 10536-10547。17。Fennell,E。和J.M.Huyghe,化学响应式水凝胶变形力学:评论。分子,2019年。24(19):p。 3521。18。Ganji,F.,F.S。 vasheghani和F.E. vasheghani,水凝胶肿胀的理论描述:评论。 2010。 19。 Lei,J。等人,用于机械行为研究的水凝胶网络模型的最新进展。 Acta Mechanica Sinica,2021。 37:p。 367-386。 20。 Zhan,Y。等人,在多功能抗固定聚合物水凝胶方面的进步。 材料科学与工程:C,2021。 127:p。 112208。 21。 Wu,S。等人,对水凝胶体积转变的建模研究。 大分子理论与模拟,2004年。 13(1):p。 13-29。 22。 Richter,A。等人,基于水凝胶的pH传感器和微传感器的综述。 传感器,2008。 8(1):p。 561-581。 23。 水,2020年。 24。Ganji,F.,F.S。vasheghani和F.E.vasheghani,水凝胶肿胀的理论描述:评论。2010。19。Lei,J。等人,用于机械行为研究的水凝胶网络模型的最新进展。Acta Mechanica Sinica,2021。37:p。 367-386。20。Zhan,Y。等人,在多功能抗固定聚合物水凝胶方面的进步。材料科学与工程:C,2021。127:p。 112208。21。Wu,S。等人,对水凝胶体积转变的建模研究。大分子理论与模拟,2004年。13(1):p。 13-29。22。Richter,A。等人,基于水凝胶的pH传感器和微传感器的综述。传感器,2008。8(1):p。 561-581。23。水,2020年。24。Wang,J。等人,作为正向渗透过程中的抽吸溶液的最新发展和未来挑战。12(3):p。 692。Cai,S。和Z. Suo,理想弹性凝胶的状态方程。epl(Europhysics Letters),2012年。97(3):p。 34009。25。li,J。等人,理想弹性凝胶的状态方程的实验确定。软件,2012年。8(31):p。 8121-8128。26。subramani,R。等人,肿胀对聚丙烯酰胺水凝胶弹性特性的影响。材料中的边界,2020年。7:p。 212。27。Kim,J。,T。Yin和Z. Suo,聚丙烯酰胺水凝胶。 V.聚合物网络中的某些链带负载,但所有链都会导致肿胀。 固体力学和物理学杂志,2022年。 168:p。 105017。 28。 Xu,S。等人,在脱水下同时加强和软化。 科学进步,2023年。 9(1):p。 EADE3240。Kim,J。,T。Yin和Z. Suo,聚丙烯酰胺水凝胶。V.聚合物网络中的某些链带负载,但所有链都会导致肿胀。固体力学和物理学杂志,2022年。168:p。 105017。28。Xu,S。等人,在脱水下同时加强和软化。科学进步,2023年。9(1):p。 EADE3240。
本文引入了一个新的框架,用于表面分析,该框架源自形状空间上的弹性Riemannian指标的一般设置。传统上,这些指标是在沉浸式表面的无限尺寸流形上定义的,并满足特定的不变特性,从而可以比较表面模型形状保存变换,例如重新构度。我们方法的特异性是将允许转换的空间限制为变形场的预定义有限尺寸基础。这些以数据驱动方式估算,以模拟特定类型的表面变换。这使我们可以简化对相应形状空间的代表到有限的尺寸潜在空间。然而,与涉及涉及的方法形成鲜明对比。网状自动编码器,潜在空间配备了从弹性指标家族继承的非欧国人Riemannian指标。我们演示了如何有效地实现该模型以在表面网格上执行各种任务,这些任务不假定这些模型已预先注册,甚至没有一致的网格结构。我们专门验证了我们对人体形状和姿势数据的方法以及人的面部和手部扫描,例如形状注册,插值,运动转移或随机姿势产生等问题。