个人信息 姓名:Muhammad Azeem 博士 婚姻状况:已婚 电子邮件地址:mazeem@unizwa.edu.om 联系电话:92036933 学历要求 博士学位。 新西兰惠灵顿维多利亚大学物理学系。2009 年 4 月 - 2014 年 2 月 论文题目:稀土氮化物的光学特性 硕士学位。 物理学系,巴基斯坦拉合尔国立大学。2006 年 9 月 - 2008 年 8 月 论文题目:碳纳米管的合成和表征。 硕士学位。 物理学系,巴基斯坦拉合尔旁遮普大学。2003 年 9 月 - 2005 年 8 月 论文题目:使用 XRD 技术识别和详细研究各种材料。教学活动、当前/以前的经验 量子力学、电动力学、材料物理学、现代光学 研究活动(包括但不限于研究兴趣、会议出席、会议报告和出版物:同行评审期刊、文章、书籍等) 研究兴趣:自旋电子学 会议报告:9 会议出席:9 出版物:22
在过去的二十年中,人们发现被称为超材料的人造结构具有非凡的材料特性,可以前所未有地操纵电磁波、弹性波、分子和粒子。负折射、带隙、近乎完美的波吸收、波聚焦、负泊松比、负热导率等现象都可以用这些材料实现。超材料最初是在电动力学中理论化和制造的,但对其应用的研究已扩展到声学、热力学、地震学、经典力学和质量传输。在本研究更新中,我们总结了超材料在各个领域的发展历史、当前进展状况和新兴方向,重点关注每个学科基础上的统一原则。我们讨论了超材料背后的不同设计和机制,以及每个领域的控制方程和有效材料参数。此外,我们还讨论了超材料的当前和潜在应用。最后,我们对超材料这一新兴领域的未来发展进行了展望。
我们报告了CMOS拆分硅纳米线晶体管中双重量子点的快速电荷状态读数,这是通过与超导能力的混合元素集成形成的大元元素谐振器中与微波光子的大分散相互作用。我们通过利用不对称的拆分门设备的较大的间点闸门杆臂α= 0.72,并通过电感耦合到谐振器增加其阻抗,z r = 560。在色散状态下,双量子点杂交点处的较大耦合强度可产生与谐振器线宽相当的频移,这是最大状态可见性的最佳设置。我们利用该制度来证明对自由度的快速分散读数,SNR在50 ns中为3.3。在谐振方案中,快速电荷的分解速率无法达到强耦合方案,但我们使用混合CMOS系统显示了向自旋光子电路量子电动力学的明确途径。
摘要。LUXE 实验(LASER Und XFEL 实验)是 DESY Hamburg 正在规划的一项新实验,它将研究强场前沿的量子电动力学 (QED)。在这种状态下,QED 是非微扰的。这表现在从 QED 真空中创建物理电子-正电子对。LUXE 打算通过使用硅跟踪探测器等来测量这种前所未有的状态下的正电子产生率。大量预期的正电子穿过敏感的探测器层会导致极具挑战性的组合问题,这对于经典计算机来说在计算上会变得非常困难。本文提出了一项初步研究,以探索量子计算机解决此问题的潜力以及从探测器能量沉积中重建正电子轨迹。重建问题以二次无约束二进制优化的形式提出。最后,讨论了量子模拟的结果,并将其与传统的经典轨迹重建算法进行了比较。
大量研究了各类特殊函数(如勒让德多项式)的性质。此外,这个无穷级数似乎不能用简单函数表示,只能用数值计算。总之,在这项工作中,我们研究了由表面电荷密度均匀的“北”半球面产生的静电势的性质。这个问题引起了广大静电学或电动力学领域研究人员和教育工作者的兴趣 20 。我们利用一种数学方法,充分利用了物体的轴对称性,推导出适用于某些特殊情况的静电势的精确紧致解析表达式。我们还推测了空间中任意一点的通解的性质,暗示它可以计算为无穷级数,但不是紧致的解析形式。作为该方法的简单副产品,我们以公式 (12) 中的表达式形式获得了一个有趣的数学积分公式。
最近,人们对量子最优控制和变分量子算法相互作用的兴趣和见解激增。我们在量子比特的背景下研究该框架,例如,量子比特可定义为与传输器耦合的超导腔系统的可控电磁模式。通过采用 (Petersson and Garcia, 2021) 中描述的最新量子最优控制方法,我们展示了对多达八个状态的单量子比特操作和两个量子比特操作的控制,分别映射到谐振器的单个模式和两个模式。我们讨论了对参数化门的封闭系统进行数值脉冲工程的结果,这些门可用于实现量子近似优化算法 (QAOA)。结果表明,对于大多数研究案例,在足够的计算努力下,可以实现高保真度 (> 0.99),并且可以扩展到多种模式和开放的噪声系统。定制的脉冲可以被存储起来并用作电路量子电动力学 (cQED) 系统中未来编译器的校准原语。
摘要:将量子信息确定性地加载到量子节点上是迈向量子网络的重要一步。本文,我们证明具有最佳时间波形的相干态微波光子可以有效地加载到半无限一维 (1D) 传输线波导中的单个超导人造原子上。使用具有指数上升波形的弱相干态(脉冲中包含的光子数 (N) ≪ 1),其时间常数与人造原子的退相干时间相匹配,我们证明从 1D 半自由空间到人造原子的加载效率为 94.2% ± 0.7%。高加载效率归因于时间反转对称性:入射波和时间反转的发射波之间的重叠高达 97.1% ± 0.4%。我们的研究结果为实现基于波导量子电动力学的量子网络开辟了有希望的应用。关键词:量子网络,光子加载,波导量子电动力学,超导人工原子Q
我们通过精确对角化分析了大质量二维量子电动力学 (QED2) 中最轻的 η 0 介子的准部分子分布。哈密顿量和增强算子被映射到具有开放边界条件的空间晶格中的自旋量子比特上。精确对角化中的最低激发态显示为在强耦合下的异常 η 0 态和弱耦合下的非异常重介子之间连续插入,并在临界点处出现尖点。增强的 η 0 态遵循相对论运动学,但在光子极限方面存在较大偏差。在强耦合和弱耦合下,对 η 0 态的空间准部分子分布函数和振幅进行了数值计算,以增加速度,并与精确的光前沿结果进行了比较。增强形式的空间部分子分布的数值结果与在最低 Fock 空间近似中得出的光子部分子分布的逆傅里叶变换相当。我们的分析指出了当前部分子分布的格子程序面临的一些局限性。
通过将分子系统强烈耦合到量化辐射1-12的新化学重新启动方面的最新进展刺激了分子量子电动力学的理论发展13-29。尤其是,超出弱的互动状态(例如Ultra-Strong耦合28(USC)和深度耦合30(DSC)制度)的光线相互作用通常是理论研究的活跃领域13,18,20,30-30-37。这种耦合方案导致了新的令人兴奋的物理素质,无法用广泛使用的近似轻质的汉密尔顿人(例如Rabi和Jaynes-Cumming Hamiltonians)18,19,21,21,24,38 Quan-Tum Optics来描述。以这种方式,至关重要的是,通过了解每种代表的不同好处和缺点,从战略上选择要使用哪种轻质的哈密顿量来建模系统。由于这一空腔量子电动力学(CQED)是量子光学和物理化学的高度跨学科图,因此可以为新手的那些人混淆哈密顿量的适当选择。通常,Hamiltonians和确切的近似水平之间的关系尚不清楚。在这篇综述中,我们试图将所有主要的仪表和在该场所中常用的所有主要仪表和代表置于一个地方,并以详细的派生相互关联,从而有助于弥合量子光学和物理化学之间的差距。这样,教派。ii引入了不同形式的Hilbert Space Hamiltonian,这些形式来自基本的最小耦合汉密尔顿。然后,在教派中。在教派中。然后,教派。本次审查是组织的,使得与单个模式结合的物质的精确汉密尔顿 - 最初是对耦合的,并且以下三个部分层在相邻上,一直到半经典的临时。iii,考虑到整个希尔伯特空间的截断,并讨论了解决由这种预测引起的仪表歧义的各种方法的讨论。iv,简化的量子光学模型相对于截短的汉密尔顿人而言是针对和基准的。v提供了与浮标理论的CQED方法的简短比较,这是半经典近似。使用此路径中的见解。vi将形式主义扩展到具有多种模式和许多分子的系统的CQED HAMILTONIAN的更具一般形式的形式。未来的观点和分析是在各节中提供的。vii。
基础课程必修课程(146 学分)线性代数:矩阵计算(2 学分)。算法(6 学分)。矢量微积分(6 学分)。英语水平 A(4 学分)。微积分 I(4 学分)、生物物理学(4 学分)、概率计算(4 学分)、数值微积分:MATLAB(2 学分)、普通化学 I(6 学分)。微积分 II(2 学分)。电磁学(4 学分)。基础电子学(6 学分)。静电学和电动力学(4 学分)。函数 I(4 学分)。电子学概论(4 学分)。物理仪器(4 学分)。医学物理学概论(4 学分)。日常生活中的 USJ 价值观(2 学分)。符号计算软件:Maple(2 学分)。静磁学(4 学分)。物理学家的数学(6 学分)。分析力学(4 学分)。经典力学(4 学分)。高级经典力学(2 学分)。流体力学(4 学分)。量子力学(4 学分)。物理学家的数学方法(6 学分)。波和波动光学(6 学分)。物质物理学(6 学分)。现代物理学(6 学分)。统计物理学(4 学分)。Python(4 学分)。狭义相对论(4 学分)。热力学(4 学分)。科学交流技巧(4 学分)。