随着电化学阻抗谱 (EIS) 社区越来越多地采用 impedance.py(Murbach 等人,2020 年)作为开源软件工具,nleis.py 是 impedance.py 的一个工具箱,旨在提供一种易于访问的工具来执行二次谐波非线性 EIS (2nd-NLEIS) 分析,并能够在未来扩展到更高的谐波分析。该工具箱在设计时考虑了 impedance.py,以最大限度地缩短用户的学习曲线。它继承了 impedance.py 的基本功能,引入了成对的线性和二次谐波非线性电路元件,并能够同时分析 EIS 和 2nd-NLEIS。使用此工具箱,可以选择单独分析 EIS 或 2nd-NLEIS 光谱,或者使用 impedance.py 工作流程同时对线性和非线性阻抗数据进行参数估计。最终,随着采用的增长,nleis.py 工具箱将被集成到impedance.py中,同时保留nleis.py的独立版本作为平台,以便在该领域成熟时开发高级功能。
本书章节 用 KCl–K 2 SiF 6 熔体电化学合成纳米硅,用于高功率锂离子电池 Timofey Gevel 1,2、Sergey Zhuk 1,2、Natalia Leonova 1、Anastasia Leonova 1、Alexey Trofimov 1,2、Andrey Suzdaltsev 1,2* 和 Yuriy Zaikov 1,2 1 俄罗斯乌拉尔联邦大学电化学器件与材料科学实验室 2 俄罗斯科学院乌拉尔分院高温电化学研究所 *通讯作者:Andrey Suzdaltsev,乌拉尔联邦大学电化学器件与材料科学实验室,Mira St. 28, 620002 叶卡捷琳堡,俄罗斯 2022 年 4 月 12 日出版 本书章节是 Andrey Suzdaltsev 等人发表的文章的转载al. 于 2021 年 11 月在 Applied Sciences 上发表。 (Gevel, T.;Zhuk, S.;Leonova, N.;Leonova, A.;Trofimov, A.;Suzdaltsev, A.;Zaikov, Y. 通过 KCl-K 2 SiF 6 熔体电化学合成纳米硅,用于强效锂离子电池。应用科学。2021,11,10927。https://doi.org/10.3390/app112210927) 如何引用本章:Timofey Gevel、Sergey Zhuk、Natalia Leonova、Anastasia Leonova、Alexey Trofimov、Andrey Suzdaltsev、Yuriy Zaikov。通过 KCl-K 2 SiF 6 熔体电化学合成纳米硅,用于强效锂离子电池。收录于:应用科学主要档案。印度海得拉巴:Vide Leaf。2022 年。© 作者 2022 年。本文根据知识共享署名 4.0 国际许可条款分发(http://creativecommons.org/licenses/by/4.0/),该许可条款允许
©2022 Elsevier出版。此手稿可在Elsevier用户许可证下提供https://www.elsevier.com/open-access/userlicense/1.0/
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
磷(P)是所有生命形式和有限资源的重要元素。p周期在调节主要生产率方面起着至关重要的作用,使其成为农业生产的限制营养素,并通过提取采矿来增加肥料的发展。但是,过多的P可能会对水生和农业生态系统产生有害的环境影响。因此,通过分析技术迫切需要保护和管理P负载,以测量P并精确地确定P形成。在这里,我们探索了一种新的2D吸附结构(GO-PDDA),用于在水性样品中传感正磷酸盐。吸附剂模仿了一群自然界中的一组磷酸盐结合蛋白,并有望在溶液中结合邻磷酸盐。激光诱导的石墨烯(LIG)用GO-PDDA覆盖。电化学阻抗光谱被用作
抽象的维生素B 12被归类为亲水性维生素之一,在致命生理学以及血红蛋白的形成和功能中起着至关重要的作用。它还促进了抗炎作用,并减轻了病毒感染的风险。本文通过在玻璃碳电极(PMB/ZnO NPS/GCE)上使用甲基蓝色和氧化锌纳米颗粒设计传感器,建立了一种电分析方法来量化市售补充剂中维生素B 12的方法。使用CO(II/I)氧化还原对通过差分脉冲伏安法检测,对维生素B 12检测具有高灵敏度。传感器的形态和厚度,以及支撑电解质的pH值也是如此。要了解影响共同种种,还进行了一项干扰研究。在优化条件下,CO(II/I)对以-0.8 V与AG/AGCL的氧化还原峰值电流,线性关系IP = 0.0673x + 0.3449,r = 0.9942,显示维生素B 12浓度的线性定量范围为0.099-69.51μm。检测极限为0.0104 µm。可重复性,灵敏度和稳定性。开发的PMB/ZnO NPS/GCE电极成功地用于确定市售补充剂中的维生素B 12。所获得的回收率在注射范围内为97.1-104%,片剂为95.9-103.3%。本文获得的结果与当前标准定量通过UV -VIS光谱法的结果进行了比较。关键字:电化学传感器,玻璃碳电极,确定VB12,聚甲基蓝,氧化锌纳米颗粒
摘要:我们最近发现的电极螺旋氧化还原DNA系统中的重组能量降低,促使人们对这种现象的起源进行询问,并提出其潜在用途来降低电化学反应的激活能。在这里,我们表明,DNA链在纳米含量中的限制会在某种程度上放大这种效果,从而几乎消除了电子传递的固有激活能。采用电化学原子力microsco-py(AFM-SECM),我们在平面电极表面轴承轴承的终极固定的铁蛋白基化的DNA链和输入的微电极tip之间创建了低于10 nm的纳米胶。在表面和尖端之间DNA的铁乙酰基(FC)部分的氧化还原循环产生〜10分子的可测量电流。我们的实验发现是通过理论建模和原始含量动力学模拟(Q-Biol代码)严格解释的。几个有趣的
在这项工作中,进行电化学测试以测量在存在离子液体(ILS)1-乙基-3-甲基咪唑乙酸酯((EMIM) +(AC) - 1-乙基-3-乙基-3-甲基-3-甲基咪唑烷基咪唑硫酸盐(BR Bromomide)的情况下,在碳钢自由溶解过程中测量氢渗透率(ILS)。 1-叔丁基-3-甲基咪唑唑化三氟甲氟化[(BMIM) +(BF 4) - ]在5.4 mol L -1 HCl水溶液中。还评估了还评估了5-羟基-2-硝基甲基 - 二苯胺(HPY)和商业腐蚀抑制剂(CCI)的渗透抑制效率(IEP(%))。在IL中,(BMIM) +(BF 4) - 化合物呈现出最高的腐蚀和氢渗透抑制效率,值分别为23%和30%。(EMIM) +(br)和(EMIM) +(AC) - 化合物无效抵抗腐蚀,但它们的IEP分别为15.8%和23%。HPY化合物在预防腐蚀方面表现出61%的有效性,而在计算机评估中则表明毒性没有毒性。但是,HPY化合物和CCI化合物在腌制过程中均未抑制氢进入碳钢。
抽象光伏(PV)综合流动细胞用于电化学能量转换和存储经历了巨大的发展。这种类型的集成流通电池系统的优点包括同时将太阳能存储到可容易用于发电的化学物质中。然而,大多数研究忽略了固有的热暴露以及随之而来的反应堆在太阳下导致的实际挑战。这项工作旨在通过引入基于计算流体动力学的方法来预测光线暴露条件下PV集成电化学流量细胞的温度曲线。此外,我们讨论了流通道块体系结构对温度曲线的影响,以提供有效的过热补救措施的见解和指南。
如果要合理设计高效、明亮的发射技术,理解“效率滚降”(即发射效率随电流增加而下降)至关重要。新兴的发光电化学电池 (LEC) 可以通过环境空气打印以成本和能源高效的方式制造,这得益于 pn 结掺杂结构的原位形成。然而,这种原位掺杂转变给有意义的效率分析带来了挑战。本文介绍了一种分离和量化主要 LEC 损耗因素(特别是出耦合效率和激子猝灭)的方法。具体而言,测得常见单线态激子发射 LEC 中发射 pn 结的位置随电流的增加而显著移动,并量化这种移动对外耦合效率的影响。进一步验证了 LEC 特有的高电化学掺杂浓度在低驱动电流密度下就已经使单重态极化子猝灭 (SPQ) 变得显著,而且由于 pn 结区域中极化子密度的增加,SPQ 还会随着电流的增加而超线性增加。这导致 SPQ 在相关电流密度下主导单重态-单重态猝灭,并且显著有助于效率下降。这种解释 LEC 效率下降的方法有助于合理实现在高亮度下高效的全印刷 LEC 设备。