电极微结构可以深刻影响锂离子电池的性能。在这项工作中,使用带有键合粒子模型的离散元素方法(DEM)研究了日历过程对电极微结构的影响。提出了使用X射线计算机断层扫描(XCT)表征的现实电极结构与理想的DEM结构之间的全面评估。断层扫描和DEM结构的电极结构和传输特性,即孔隙率分布,特定的表面积和曲折因子。在考虑了碳粘合剂结构域(CBD)阶段后,进一步进行电化学分析。考虑到日历的效果,可以实现层析成像和理想化结构之间的良好一致性。带有电极压缩电池的性能在日历后改善。本研究为使用DEM和电化学分析提供了基础来定量评估将来的电池性能。
通过电化学方法将 CO2 还原 (CO2R) 为乙烯和乙醇,可以将可再生电能长期储存在有价值的多碳 (C2+) 化学品中。然而,碳 - 碳 (C - C) 偶联是 CO2R 转化为 C2+ 的速率决定步骤,其效率低下且稳定性差,尤其是在酸性条件下。在这里,我们发现,通过合金化策略,相邻的二元位点可以实现不对称的 CO 结合能,从而促进 CO2 到 C2+ 的电还原,超越单金属表面上由缩放关系决定的活性极限。我们通过实验制备了一系列 Zn 掺入 Cu 催化剂,这些催化剂表现出增强的不对称 CO* 结合和表面 CO* 覆盖率,可在电化学还原条件下实现快速的 C - C 偶联和随之而来的加氢。进一步优化纳米界面处的反应环境可抑制氢气的释放并提高酸性条件下的 CO2 利用率。结果,在弱酸性 pH 4 电解质中,我们实现了 31 ± 2% 的高单程 CO 2 到 C 2+ 产量,单程 CO 2 利用率 > 80%。在单个 CO 2 R 流电池电解槽中,我们实现了 91 ± 2% 的 C 2+ 法拉第效率,其中乙烯法拉第效率高达 73 ± 2%,全电池 C 2+ 能量效率为 31 ± 2%,在 150 小时内以商业相关电流密度 150 mA cm − 2 实现 24 ± 1% 的单程 CO 2 转化率。
本文介绍了锂硫 (Li-S) 储能电池的应用,同时展示了几种缓解其电化学挑战的技术的优缺点。无人机、电动汽车和电网规模储能系统是 Li-S 电池的主要应用,因为它们成本低、比容量高、重量轻。然而,多硫化物穿梭效应、低电导率和低库仑效率是 Li-S 电池面临的关键挑战,导致体积变化大、树枝状生长和循环性能受限。固态电解质、界面夹层和电催化剂是缓解这些挑战的有前途的方法。此外,纳米材料能够改善 Li-S 电池的动力学反应,这是基于纳米粒子的几种特性,将硫固定在阴极中,稳定阳极中的锂,同时控制体积增长。考虑到基于可再生能源的环保系统,Li-S 储能技术能够满足未来市场对高功率密度、低成本的先进充电电池的需求。
氧化铜因其半导体性质、高化学稳定性和经济效益而被确立为技术中的重要化合物。这些特性使其成为储能应用的良好候选材料。此外,由于其独特的特性,例如高功率、长循环寿命和环保性,超级电容器(电池和传统电容器之间的互补装置)的发展受到了广泛关注。此外,氧化铜引起了人们对制备可用于超级电容器制备的适用正极的兴趣。同时,氧化铜容易与极化液体和聚合物混合,并且具有相对稳定的化学和物理性质。氧化铜的电化学特性取决于形态,在这些装置中可以优化电极材料的适当结构设计。在这篇综述中,我们将探讨氧化铜的合成及其作为阴极材料的氧化还原机理,以及各种氧化铜化合物在制备高性能超级电容器中的应用。
专用阻抗系统的引入。[4] 其最简单的形式是,在浸入细菌培养物的一对电极上测量单一频率的交流阻抗。[5] 随着细菌的生长,培养基的电导率会发生变化[6],这是细菌代谢的结果,不带电的底物会转化为带电的代谢物。[4,7] 这反过来又导致阻抗的变化。[5] 事实证明,阻抗优于通常用于尿液[8] 和血液中细菌检测的菌落形成单位计数。[9,10] 研究发现,培养基的电导率与吸光度监测的细菌生长有很好的相关性。[11] 尽管该领域取得了进展,但只有少数阻抗传感器实现了商业化,主要是因为检测限不令人满意且生产成本高。 [5] 1977 年共轭聚合物的发现和有机生物电子学的出现,为科学界提供了能够进行离子和电子传输的低成本、易于加工的材料。[12,13] 这导致了微生物学和感染研究的创新方法和新型设备的开发。[14–17]
呼吸组学是研究呼出气体的一种方法。它有助于发现生物标志物,并可作为评估身体疾病状态和预后的工具。5 呼吸组学正在发展成为一种快速、灵敏、特异且微创的方法,用于研究与身体功能相关的代谢途径释放的内源性挥发性有机化合物和无机气体。6 多位研究人员报告了呼吸中生物标志物水平与肺癌之间的关系。7 – 9 由于肺癌的死亡率非常高,因此开发可在早期检测疾病的工具迫在眉睫。如今,呼吸挥发性有机化合物 (VOC) 分析在该领域前景光明。在呼吸中发现的一些与肺癌相关的生物标志物包括丙醇、异戊二烯、丙酮、异戊烷、己醛、甲苯和苯。呼吸组学领域的先驱研究人员之一 Michael Philips
本文对用于智能电网的不同形式的电化学储能技术进行了比较分析。本文讨论了用于连接到智能电网的可再生能源的各种储能技术。储能技术很可能会提高可再生能源在电网中的渗透率。因此,储能系统可能是最终用可再生能源取代化石燃料的关键。由于每种技术的使用方式不同,而且更像是补充,因此很难评估不同类型的储能技术。因此,就本文而言,可以看出,使用储能技术将增加能源供应,并平衡能源需求。
机械力在细胞通信和信号传导中起重要作用。我们在这项研究中开发了新型电化学基于DNA的力传感器,用于测量细胞生成的粘附力。在基于智能手机的电化学装置的表面上构建了两种类型的DNA探针,即张力量规系和DNA发夹,以检测可调级别的Piconewton尺度细胞力。经历细胞张力后,DNA探针的展开会诱导氧化还原报道与电极表面的分离,从而导致可检测到的电化学信号。以整联蛋白介导的细胞粘附为例,我们的结果表明这些电化学传感器可用于高度敏感,健壮,简单和便携的细胞生成力测量。
抽象的锂离子电池是电化学能源存储设备,已使运输系统和大规模网格储能的电气化。在其操作生命周期中,电池不可避免地会发生衰老,从而导致其性能逐渐下降。在本文中,我们为读者提供了计算电池单元整个寿命范围内系统级性能指标的工具。这些指标是从标准化参考性能测试(也称为诊断测试)中提取的,在电池老化实验期间定期进行。我们分析了公开可用数据集的诊断测试(Pozzato等人在数据简介中41:107995,2022)由容量测试,高脉冲功率表征测试和电化学阻抗光谱组成。我们提供详细的计算方法和MATLAB®脚本,以提取容量,能量,电荷,最新能源,开路电压,内部电阻,功率,增量容量和差分电压。MATLAB®脚本为生成本文生成图的脚本已被公众访问(Ha等在Mendeley数据中,V3,2023)。本文的主要目的是为有兴趣表征电池的性能和健康指标的本科生和研究生,教育工作者和研究人员提供无障碍指南。这种特征对于可以用于改善周期寿命估计和提高电池管理系统算法的电池老化模型的开发至关重要。