哺乳动物基因组中DNA甲基化的主要功能是抑制转座元素(TES)。在癌细胞中通常观察到的广泛的甲基化损失导致TE的表观遗传抑制丧失。衰老过程的特征是甲基甲基的变化。然而,这些表观基因组改变对沉默的影响及其功能后果尚不清楚。为了评估衰老中TES的表观遗传调节,我们在人类乳腺腔上皮细胞(LEPS)中介绍了DNA甲基化(LEPS),这是一种与年龄较大的乳腺癌有关的关键细胞谱系 - 来自年龄较大的乳腺癌。我们在这里报告说,几个TE亚家族在正常LEP中充当调节元素,并且这些子集的一部分显示出随着年龄的增长而显示一致的甲基化变化。在这些TES处的甲基化变化发生在谱系特异性转录因子结合位点,与谱系特异性的丧失一致。主要显示甲基化损失,而CpG岛(CGI)是Polycomb抑制性复合物2(PRC2)的靶标,显示衰老细胞中甲基化的增加。在衰老的LEP中,许多具有甲基化损失的TE都有乳腺癌样品中调节活性的证据。我们还表明,TES的甲基化变化会影响与腔乳腺癌相关的基因的调节。这些结果表明,衰老会导致TES的DNA甲基化变化,从而弥补了维持谱系特异性,并可能增加对乳腺癌的敏感性。
鼻病毒和过敏原,例如房屋尘螨是负责哮喘病情的主要药物。急性呼吸道综合征2(SARS-COV-2)对感染感染的预先存在气道肿瘤的影响在很大程度上是未知的。我们分析了健康对照组和哮喘患者的体内鼻病毒感染中对病毒感染的反应机制,以及在人类原发性呼吸道表演中的房屋粉尘螨,鼻虫和SARS-COV-2的体外实验中。在这里,我们表明哮喘患者的鼻病毒感染会导致过度的RIG-I浮游性激活,从而降低了其对I/III型干扰素反应的访问性,从而导致早期功能性触觉,延迟分辨率,延长病毒性清除率和无效的Incromative androved Incromation intro androved androved andro ammmater ando ando ando ando and viv和Viv。预先暴露于房屋尘螨通过浮游性启动和对早期I/III型干扰素反应的辅助抑制来增强这种现象。先前感染了鼻病毒,然后是SARS-COV-2感染增强了RIG-I浮游性激活和上皮炎症。及时抑制上皮rig-i脉络膜可能会导致更多有效的病毒清除率,并降低鼻病毒和SARS-COV-2感染的负担。
上皮免疫反应控制组织稳态,并提供针对不适的药物靶标。在这里,我们报告了一个生成药物发现的框架 - 对病毒感染的细胞反应的现成记者。我们反向工程上皮细胞对SARS-COV-2的反应,SARS-COV-2,这种病毒剂为正在进行的Covid-19 pan-panemic燃料,并设计了合成转录报告基因,其分子逻辑包含干扰素-α/β/β/γ/γ/γ和NF-κB途径。这种调节势反映了从实验模型到严重的Covid-19患者上皮细胞感染的单细胞数据。SARS-COV-2,I型干扰素和RIG-I Drive Reporter Activation。实时细胞图像 - 基于表型药物筛选确定了JAK抑制剂和DNA损伤诱导剂是对干扰素,RIG-I刺激和SARS-COV-2的上皮细胞反应的拮抗调节剂。通过药物对记者的协同或拮抗剂调制,强调了其对内源转录程序的作用机理和收敛性。我们的研究描述了一种剖析对感染和无菌提示的抗病毒反应的工具,并迅速发现了有关新兴病毒的合理药物组合。
小鼠乳腺由导管树组成,导管树内衬上皮细胞,每个乳头顶端都有一个开口。上皮细胞在乳腺功能中起着重要作用,是大多数乳腺肿瘤的起源。将感兴趣的基因引入小鼠乳腺上皮细胞是评估上皮细胞基因功能和生成小鼠乳腺肿瘤模型的关键步骤。这一目标可以通过将携带感兴趣基因的病毒载体注射到小鼠乳腺导管树中来实现。注射的病毒随后感染乳腺上皮细胞,带来感兴趣的基因。病毒载体可以是慢病毒、逆转录病毒、腺病毒或腺病毒相关病毒 (AAV)。这项研究展示了如何通过小鼠乳腺导管内注射病毒载体将感兴趣的基因传递到乳腺上皮细胞中。携带GFP的慢病毒用于显示传递基因的稳定表达,携带Erbb2(HER2/Neu)的逆转录病毒用于显示致癌基因诱导的非典型增生性病变和乳腺肿瘤。
Antonella FM Dost, 1 , 2 , 3 , 17 Aaron L. Moye, 1 , 2 , 3 , 17 Marall Vedaie, 4 , 5 Linh M. Tran, 6 Eileen Fung, 7 Dar Heinze, 4 , 8 Carlos Villacorta-Marting, 5 , 19 , Ryan Heman Julian H. Kwan, 9 , 10 Benjamin C. Blum, 9 , 10 Sharon M. Louie, 1 , 2 , 3 Samuel P. Rowbotham, 1 , 2 , 3 Julio Sainz de Aja, 1 , 2 , 3 Mary E. Piper, 11 Preetida J. Bhetariya , 1 , 1 , T Roderick . Bronson, 12 Andrew Emili, 9 , 10 , 13 Gustavo Mostoslavsky, 4 , 8 Gregory A. Fishbein, 14 William D. Wallace, 14 , 15 Kostyantyn Krysan, 6 Steven M. Dubinett, 6 , 16 Jane Yanaga , 17 , 4 , 4 * Darrell * N. , * and Carla F. Kim 1 , 2 , 3 , 18 , * 1 Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA 2 Harvard Stem Cell Institute, Cambridge, MA 02133 Department of Genetics, Harvard Medical School, MA, Boston 5, USA 4 Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA 5 The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA 6 Department of Medicine, David Geffen School of Medicine at UCLA, University of Los Angeles, Los Angeles, CA, David Geffen School of Medicine, CA cine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA 8 Section of Gastroenterology and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA 9 Center for Network Systems Biology, Boston University, Boston, MA 02118, USA 10 Department of Biochemistry, Boston University School of Medicine, MA, MA of Public Health, Department of Biostatistics, Boston, MA 02115, USA 12 Rodent Histopathology Core, Harvard Medical School, Boston, MA 02115, USA 13 Department of Biology, Boston University, Boston, MA 02215, USA 14 Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA 15 Department of Pathology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA 16 Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA 17 These authors contributed equally 18. Contact: Contact Letters: Connected with Legal. JY), dkotton@bu.edu (DNK), carla.kim@childrens.harvard.edu (CFK) https://doi.org/10.1016/j.stem.2020.07.022
。CC-BY-NC-ND 4.0 国际许可证下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2023 年 10 月 2 日发布。;https://doi.org/10.1101/2023.09.30.560293 doi:bioRxiv 预印本
抽象背景/旨在研究培养的口腔粘膜上皮移植(彗星)的长期结局,以在患有慢性囊肿性疾病的眼睛中进行延伸。方法这项回顾性队列研究涉及16例接受Symblepharon彗星释放和FORNIX重建的患者的眼睛,2002年6月至2008年12月之间。平均术后随访期为102.1±46.0个月(范围:32–183个月)。The treated cicatrising disorders included ocular cicatricial pemphigoid (OCP, five eyes), thermal/chemical injury (three eyes) and other chronic diseases (seven eyes; including recurrent pterygium (two eyes), Stevens-Johnson syndrome (one eye) and graft-versus-host disease (one eye)).在手术前,术后1、4、12和24周评估了眼表面的外观,然后根据先前报道的评分系统每年评估。主要结局指标包括通过Kaplan-Meier生存曲线分析的整体和疾病特异性的FORNIX重建成功概率。SymblePharon/Fornix缩短了术后24周的复发及其与长期手术成功的关系。术后5年的结果,平均值±SD总结恢复成功概率为79.6%±10.7%,热/化学损伤的成功概率分别为100%和53.3%±24.8%(p = 0.53,对数范围测试)。在术后24周(13眼)的无疾病复发组中,3年的成功概率明显高于疾病反应组(三只眼睛)(分别为100%和33.3%和33.3%和33.3%±27.2%)(P = 0.0073,对数范围测试)。结论彗星被发现对于慢性囊化的眼睛中的象征性释放和长期洞缩式重建是安全有效的。尽管5年的成功概率差异取决于潜在疾病,但术后24周的眼表面出现是预测长期结局的一个因素。
IFN-γ的产生对于控制多种肠道感染至关重要,但是它对肠上皮细胞(IEC)的影响尚不清楚。隐孢子虫寄生虫仅感染上皮细胞,并且干扰素激活IEC中转录因子Stat1的能力是寄生虫清除所必需的。在这里,在感染过程中使用单细胞RNA测序在感染过程中促进IEC,发现在感染过程中,脑海中肠细胞的比例增加,并诱导IFN-γ依赖性基因信号,而未感染和感染细胞之间是可比的。这些分析是通过体内研究补充的,这表明寄生虫对照需要IEC的IEC表达。出乎意料的是,用IFN-γ的IFNG - / - 小鼠的治疗表明对这种细胞因子的IEC反应与寄生虫负担的延迟减少相关,但不会影响寄生虫的发展。这些数据集提供了对IFN-γ对IEC的影响的洞察力,并提出了一个模型,其中IFN-γ信号传导对未感染的肠上皮细胞对于控制隐孢子虫很重要。
长链非编码RNA(lncRNA)长度超过200个核苷酸,是一类新发现的基因转录副产物,由于缺乏开放阅读框6,其蛋白质编码功能有限。越来越多的研究表明,lncRNA通过转录和转录后水平等多种机制在基因调控中起着潜在的调节作用7。鉴于lncRNA对肿瘤相关基因的积极影响,其可能参与癌症进展也就不足为奇了8,9。近年来,利用高通量测序技术发现了越来越多在各类肿瘤中失调的lncRNA,随后通过RT-PCR实验进一步证实10,11。随后,许多功能实验表明,lncRNA可以作为肿瘤启动子或抑癌基因来调节肿瘤细胞行为12,13。 lncRNA 的频繁失调及其在肿瘤进展中的重要作用凸显了 lncRNA 作为新型生物标志物的巨大潜力 14,15 。LncRNA PTPRG 反义 RNA 1 (PTPRG-AS1) 是一种新发现的 lncRNA,由 Yi 等人首次在鼻咽癌中阐明其功能。16 。此前,PTPRG-AS1 也在肺癌和乳腺癌中表达 17,18 。然而,它们在上述两种肿瘤中的功能仍有待探索。到目前为止,PTPRG-AS1 是否在 EOC 中异常表达尚未得到证实。在这项研究中,我们首次提供了 PTPRG-AS1 在 EOC 组织中高表达的证据,并有可能作为 EOC 患者的新型预后生物标志物。
上皮细胞上的顶纤毛通过从呼吸道气道中推动病原体和颗粒物来捍卫肺。纤毛细胞产生的ATP,可以通过将顶部膜下方的线粒体密度分组为纤毛跳动。但是,这种有效的定位是付出代价的,因为在氧化苯二元化过程中泄漏的电子与分子氧反应形成超氧化物,因此,线粒体的簇产生了用于氧化生产的热点。相对较高的氧气浓度上覆的气道上皮进一步增强了产生超氧化物的风险。因此,气道纤毛细胞面临产生有害氧化剂水平的独特挑战。令人惊讶的是,高度纤毛上皮产生的活性氧(ROS)比几乎没有纤毛细胞的上皮含量较少。与其他空气细胞类型相比,纤毛细胞表达高水平的线粒体解偶联蛋白UCP2和UCP5。这些蛋白质降低了线粒体质子示数力,从而降低了ROS的产生。结果,脂质过氧化是氧损伤的标志物,减少了。然而,线粒体解偶联蛋白的确切价格可以减少氧化剂的产生;它们减少了产生ATP的线粒体呼吸的比例。这些发现表明纤毛细胞牺牲线粒体效率,以换取安全氧化的安全性。使用解偶联蛋白来防止氧化剂产生,而不是仅仅依靠抗氧化剂来降低后生产氧化剂水平,可能为靶向靶向强烈的ROS产生的局部区域提供了优势。