摘要:甲基铵铅三纤维胺钙钛矿(Mapbbr 3)是重要的材料,例如,用于发光应用和串联太阳能电池。相关的光物理特性受激发态以激发态的复杂且相对较少理解的相互作用和自由电荷载体的相互作用而产生的许多现象。在这项研究中,我们在可见光和Terahertz范围内结合了瞬态光谱镜,以在各种光子能量和密度下激发时在超快时在超消极时段研究激发子和自由载体的存在。对于上述和谐振带隙激发,我们发现自由电荷和激发子共存,并且两者主要是在我们的50 - 100 fs实验时间分辨率中迅速生成的。然而,随着对谐振带隙激发的调子能量降低,激子与无电荷比增加。自由电荷签名主导了瞬时启动激发和低激发密度的瞬时吸收响应,从而掩盖了激发型特征。具有谐振带隙激发和低激发密度,我们发现尽管激发子密度增加,但仍保留自由电荷。我们表明,激子将其定位到浅陷阱和/或Urbach尾部状态中形成局部激子(在Picseconds的数十个内部),后来被逐渐降低。使用高激发密度,我们证明了多体相互作用变得明显,诸如苔藓 - 爆发的偏移,带隙重新归一化,兴奋能源排斥和Mahan激子的形成之类的作用显而易见。■简介在超快时间尺度上,我们在此处证明的激发型Mapbbr 3的激子和自由电荷的共存证实了材料对发光二极管和串联太阳能电池应用的高潜力。
2D 过渡金属二硫属化物的电子和光学特性主要受强激子共振控制。激子动力学在许多微型 2D 光电器件的功能和性能中起着关键作用;然而,纳米级激子行为的测量仍然具有挑战性。据报道,这里使用近场瞬态纳米显微镜探测衍射极限以外的激子动力学。作为概念验证演示,研究了单层和双层 MoS 2 中的激子复合和激子-激子湮没过程。此外,通过访问局部位置的能力,可以解决单层-双层界面附近和 MoS 2 纳米皱纹处有趣的激子动力学。如此纳米级的分辨率凸显了这种瞬态纳米显微镜在激子物理基础研究和功能器件进一步优化方面的潜力。
为高性能选择应用设计二维卤化物钙钛矿需要深入了解控制其兴奋性行为的结构 - 陶艺关系。然而,尚未开发出由A位点和间隔阳离子进行修饰的内部和层间结构的设计。在这里,我们使用压力来协同调整内部和层间结构,并发现结构调制,从而改善了光电子的性能。在施加的压力下,(Ba)2(ga)Pb 2 I 7表现出72倍的光致发光和光电导率增长10倍。基于观察到的结构变化,我们引入了一个结构描述符χ,该结构描述χ描述了内部和间层间特性,并在χ和光致发光量子量产率之间建立了一般的定量关系:较小的χ与最小化的捕获激子的激子以及来自自由激子的最小生效发射。根据此原理构建,我们设计了一个钙钛矿(CMA)2(FA)Pb 2 I 7,该7 7具有较小的χ和令人印象深刻的光致发光量子产率为59.3%。
摘要:在原子上薄的半导体中,CRSBR脱颖而出,因为它的散装和单层形式在磁性环境中均构成紧密结合的准二维激子。尽管对固态研究至关重要,但激子的寿命仍然未知。虽然Terahertz极化探测可以直接跟踪所有激子,而与带间选择规则无关,但相应的大型远场灶基本上超过了横向样品尺寸。在这里,我们将Terahertz极化光谱与近场显微镜结合在一起,以揭示CRSBR单层中的磁磁复发剂的飞秒衰减,该crsbr的单层比散装寿命短30倍。我们在散装CRSBR中揭示了结合和未结合的电子 - 孔对的低能指纹,并以无模型的方式提取单层的非平衡介电函数。我们的结果表明,首次直接访问CRSBR中准单维激子的超快速介电响应,可能会推进基于Ultrathin van der waals磁铁的量子设备的开发。关键字:原子上的固体,范德华磁铁,各向异性激子,超快动力学,飞秒近场显微镜,Terahertz
摘要:由有机半导体和无机量子点 (QD) 组成的混合物适用于许多光电应用和设备。然而,有机 QD 混合物中的各个组分在薄膜加工过程中很容易聚集和相分离,从而损害其结构和电子特性。在这里,我们展示了一种 QD 表面工程方法,该方法使用与有机半导体主体材料相匹配的电子活性、高溶解度半导体配体来实现分散良好的无机 - 有机混合薄膜,其特征是通过 X 射线和中子散射以及电子显微镜来表征的。这种方法保留了有机相和 QD 相的电子特性,并在它们之间创建了优化的界面。我们在两个新兴应用中对此进行了举例说明,即基于单线态裂变的光子倍增 (SF-PM) 和基于三线态 - 三线态湮没的光子上转换 (TTA-UC)。稳态和时间分辨光谱表明,三线态激子可以以接近 1 的速度高效地跨有机 - 无机界面传输,而有机薄膜在有机相中保持高效的 SF(产率为 190%)。通过改变有机和无机成分之间的相对能量,在 790 nm NIR 激发下观察到黄色上转换发射。总体而言,我们提供了一种高度通用的方法来克服有机半导体与 QD 混合的长期挑战,这对许多光学和光电应用都具有重要意义。■ 简介
1 中国南京大学,南京2号2中国北京,中国北京5中国北京大学,中国北京6个国家固态微观结构实验室,江苏,江苏,人造功能材料的主要实验室,工程和应用科学学院,南京大学,南京,南京,中国7史坦福大学7史坦福大学同步辐射灯,SLAC国家加速实验室,Quartia of Quorm Loaderia中国杭州吉安理工大学应用物理系的省省9跨大规模量子科学研究所,东京大学,东京113-0033,日本中国南京大学,南京2号2中国北京,中国北京5中国北京大学,中国北京6个国家固态微观结构实验室,江苏,江苏,人造功能材料的主要实验室,工程和应用科学学院,南京大学,南京,南京,中国7史坦福大学7史坦福大学同步辐射灯,SLAC国家加速实验室,Quartia of Quorm Loaderia中国杭州吉安理工大学应用物理系的省省9跨大规模量子科学研究所,东京大学,东京113-0033,日本中国南京大学,南京2号2中国北京,中国北京5中国北京大学,中国北京6个国家固态微观结构实验室,江苏,江苏,人造功能材料的主要实验室,工程和应用科学学院,南京大学,南京,南京,中国7史坦福大学7史坦福大学同步辐射灯,SLAC国家加速实验室,Quartia of Quorm Loaderia中国杭州吉安理工大学应用物理系的省省9跨大规模量子科学研究所,东京大学,东京113-0033,日本中国南京大学,南京2号2中国北京,中国北京5中国北京大学,中国北京6个国家固态微观结构实验室,江苏,江苏,人造功能材料的主要实验室,工程和应用科学学院,南京大学,南京,南京,中国7史坦福大学7史坦福大学同步辐射灯,SLAC国家加速实验室,Quartia of Quorm Loaderia中国杭州吉安理工大学应用物理系的省省9跨大规模量子科学研究所,东京大学,东京113-0033,日本中国南京大学,南京2号2中国北京,中国北京5中国北京大学,中国北京6个国家固态微观结构实验室,江苏,江苏,人造功能材料的主要实验室,工程和应用科学学院,南京大学,南京,南京,中国7史坦福大学7史坦福大学同步辐射灯,SLAC国家加速实验室,Quartia of Quorm Loaderia中国杭州吉安理工大学应用物理系的省省9跨大规模量子科学研究所,东京大学,东京113-0033,日本中国南京大学,南京2号2中国北京,中国北京5中国北京大学,中国北京6个国家固态微观结构实验室,江苏,江苏,人造功能材料的主要实验室,工程和应用科学学院,南京大学,南京,南京,中国7史坦福大学7史坦福大学同步辐射灯,SLAC国家加速实验室,Quartia of Quorm Loaderia中国杭州吉安理工大学应用物理系的省省9跨大规模量子科学研究所,东京大学,东京113-0033,日本中国南京大学,南京2号2中国北京,中国北京5中国北京大学,中国北京6个国家固态微观结构实验室,江苏,江苏,人造功能材料的主要实验室,工程和应用科学学院,南京大学,南京,南京,中国7史坦福大学7史坦福大学同步辐射灯,SLAC国家加速实验室,Quartia of Quorm Loaderia中国杭州吉安理工大学应用物理系的省省9跨大规模量子科学研究所,东京大学,东京113-0033,日本中国南京大学,南京2号2中国北京,中国北京5中国北京大学,中国北京6个国家固态微观结构实验室,江苏,江苏,人造功能材料的主要实验室,工程和应用科学学院,南京大学,南京,南京,中国7史坦福大学7史坦福大学同步辐射灯,SLAC国家加速实验室,Quartia of Quorm Loaderia中国杭州吉安理工大学应用物理系的省省9跨大规模量子科学研究所,东京大学,东京113-0033,日本中国南京大学,南京2号2中国北京,中国北京5中国北京大学,中国北京6个国家固态微观结构实验室,江苏,江苏,人造功能材料的主要实验室,工程和应用科学学院,南京大学,南京,南京,中国7史坦福大学7史坦福大学同步辐射灯,SLAC国家加速实验室,Quartia of Quorm Loaderia中国杭州吉安理工大学应用物理系的省省9跨大规模量子科学研究所,东京大学,东京113-0033,日本
摘要:由有机半导体和无机量子点 (QD) 组成的混合物适用于许多光电应用和设备。然而,有机 QD 混合物中的各个组分在薄膜加工过程中很容易聚集和相分离,从而损害其结构和电子特性。在这里,我们展示了一种 QD 表面工程方法,该方法使用与有机半导体主体材料相匹配的电子活性、高溶解度半导体配体来实现分散良好的无机 - 有机混合薄膜,其特征是通过 X 射线和中子散射以及电子显微镜来表征的。这种方法保留了有机相和 QD 相的电子特性,并在它们之间创建了优化的界面。我们在两个新兴应用中对此进行了举例说明,即基于单线态裂变的光子倍增 (SF-PM) 和基于三线态 - 三线态湮没的光子上转换 (TTA-UC)。稳态和时间分辨光谱表明,三线态激子可以以接近 1 的速度高效地跨有机 - 无机界面传输,而有机薄膜在有机相中保持高效的 SF(产率为 190%)。通过改变有机和无机成分之间的相对能量,在 790 nm NIR 激发下观察到黄色上转换发射。总体而言,我们提供了一种高度通用的方法来克服有机半导体与 QD 混合的长期挑战,这对许多光学和光电应用都具有重要意义。■ 简介
1 华沙大学物理学院实验物理研究所,ul. Pasteura 5, 02-093 Warszawa,波兰 2 弗罗茨瓦夫理工大学技术基础问题学院半导体材料工程系,Wybrze _ ze Wyspia nskiego 27, 50-370 Wrocław,波兰 3 华沙大学化学学院电化学实验室,ul. Pasteura 1, 02-093 Warszawa,波兰 4 北京航空航天大学微电子学院合肥创新研究院,合肥 230013,中国 5 巴塞罗那地球科学中心 (GEO3BCN),CSIC,Llu ıs Sol ei Sabar ıs sn,加泰罗尼亚,08028 巴塞罗那,西班牙 6 弗罗茨瓦夫理工大学实验物理系,Wybrze _ ze Wyspia nskiego 27,50-370 弗罗茨瓦夫,波兰
摘要:在本文中,我们证明了2D钙钛矿(PEA)2 PBI 4(PEPI)中的激子/激子an灭是太阳能电池和光发光二极管中的主要损失机制,可以通过抗激元与腔之间的耦合来控制。我们使用时间分辨的瞬态吸收光谱研究激发状态动力学,并表明可以通过通过PEPI层厚度改变腔宽度,从而通过强耦合方式调节系统。非常明显的是,即使腔质量因子仍然很差,也会出现强大的耦合。我们证明,观察到的类似衍生物样的瞬态吸收光谱可以使用时间依赖性的RABI分裂来对其进行建模,而Rabi分裂是由于激子的瞬时漂白而发生的。当PEPI强烈耦合到腔体时,激子/激子歼灭速率被1个数量级抑制。一个依赖北极子部分光子特征的模型将结果解释为失谐的函数。