摘要:由有机半导体和无机量子点 (QD) 组成的混合物适用于许多光电应用和设备。然而,有机 QD 混合物中的各个组分在薄膜加工过程中很容易聚集和相分离,从而损害其结构和电子特性。在这里,我们展示了一种 QD 表面工程方法,该方法使用与有机半导体主体材料相匹配的电子活性、高溶解度半导体配体来实现分散良好的无机 - 有机混合薄膜,其特征是通过 X 射线和中子散射以及电子显微镜来表征的。这种方法保留了有机相和 QD 相的电子特性,并在它们之间创建了优化的界面。我们在两个新兴应用中对此进行了举例说明,即基于单线态裂变的光子倍增 (SF-PM) 和基于三线态 - 三线态湮没的光子上转换 (TTA-UC)。稳态和时间分辨光谱表明,三线态激子可以以接近 1 的速度高效地跨有机 - 无机界面传输,而有机薄膜在有机相中保持高效的 SF(产率为 190%)。通过改变有机和无机成分之间的相对能量,在 790 nm NIR 激发下观察到黄色上转换发射。总体而言,我们提供了一种高度通用的方法来克服有机半导体与 QD 混合的长期挑战,这对许多光学和光电应用都具有重要意义。■ 简介
过去几十年来,生长技术的令人瞩目的进步使得人们能够制造出非常高质量的低维半导体结构——量子阱、量子线和量子点,这为光电子学和自旋电子学领域的量子信息技术开辟了新的研究途径和无数的应用 1-3 。作为量子限制的直接结果,基本半导体激发可以达到非常大的结合能,使所谓的“激子”领域成为一个有前途的研究领域 4 。虽然激子的概念在空间限制沿一维(量子阱)或二维(量子线)时有意义,但我们在这里表明,当三个空间维度受到限制(量子点)时,束缚电子-空穴对作为激子的图像会被打破。这就是为什么我们不应该像对待其他结构那样将量子点 (QD) 中的电子-空穴对称为激子,而应该使用其他术语。这个问题不仅仅是语义问题;对于电子-空穴对与其他载流子相互作用并与光子耦合,以及光子吸收的可能性,物理理解完全不同。
摘要:半导体纳米晶体中电子和空穴之间的静电相互作用 (EI) 强度对其光电系统的性能有重大影响,不同的光电器件对活性介质的 EI 强度有不同的要求。然而,实现特定光电应用的 EI 强度的大范围和微调是一项艰巨的挑战,特别是在准二维核壳半导体纳米片 (NPL) 中,因为沿厚度方向的无机壳外延生长仅对量子限制效应有贡献,但却会严重削弱 EI 强度。在此,我们提出并展示了一种双梯度 (DG) 核壳结构的半导体 NPL,通过平面内结构调制控制局部激子浓度来按需调整 EI 强度,这通过对辐射复合率和激子结合能的广泛调整得到了证明。此外,这些激子浓度设计的 DG NPL 还表现出接近 1 的量子产率、高光和热稳定性以及显著抑制的自吸收。作为概念验证演示,基于 DG NPL 实现了高效的颜色转换器和高性能发光二极管(外部量子效率:16.9%,最大亮度:43,000 cd/m 2)。因此,这项工作为高性能胶体光电器件应用的开发提供了见解。关键词:半导体纳米片、接近 1 的量子产率、可定制的静电相互作用、高稳定性、光电子学
激子 - 结合的电子孔对 - 扮演在光结合相互作用现象中的核心作用,对于从光收集和发电到量子信息处理的广泛应用至关重要。固态光学的长期挑战是实现对激发运动的精确和可扩展的控制。我们提出了一种使用纳米结构的栅极电极来创建2D半导体中激子的潜在景观的技术,从而使纳米级的原位波函数启用了原位波函数。我们的方法形成了各种几何形状(例如量子点,环及其阵列)中激子的静电陷阱。我们显示出空间分离的量子点的独立光谱调整,尽管材料障碍,但仍达到了堕落。由于2D半导体中激子的强光耦合,我们观察到光学反射和光致发光测量中受到约束激发波函数的明确特征。这项工作解锁了在纳米尺度上进行启动激子动力学和相互作用的可能性,对光电设备,拓扑光子学和量子非线性光学元件产生了影响。
Los Alamos国家实验室是一项平权行动/均等机会雇主,由Triad National Security,LLC经营,为美国能源部国家核安全管理局根据合同89233218CNA000001运营。通过批准本文,出版商认识到,美国政府保留了不判有限定的免版税许可,以出版或复制已发表的此捐款形式,或者允许其他人出于美国政府的目的。洛斯阿拉莫斯国家实验室要求出版商根据美国能源部主持的工作确定这篇文章。Los Alamos国家实验室强烈支持学术自由和研究人员发表权;但是,作为一个机构,实验室并未认可出版物的观点或保证其技术正确性。
第二次谐波生成(SHG)是一个非线性光学过程,其中两个光子连贯地组合成两个光子的能量的两倍。的效果SHG。在这里,我们显示了反转对称晶体中非线性光学过程的调整。这种可调节性基于双层MOS 2的独特性能,该特性显示出强烈的光学振荡器强度,但也显示了层间激子的共振。当我们通过改变激光能将SHG信号调谐到这些共振上时,SHG振幅通过几个数量级增强。在谐振情况下,双层SHG信号达到的幅度与单层的两个共振信号相当。在施加的电场中,可以通过鲜明的效应来调节层间激子能量。因此,取消了层间激子退化性,并通过我们的模型计算得出的良好再现了两个数量级,进一步增强了双层SHG响应。
2D 过渡金属二硫属化物的电子和光学特性主要受强激子共振控制。激子动力学在许多微型 2D 光电器件的功能和性能中起着关键作用;然而,纳米级激子行为的测量仍然具有挑战性。据报道,这里使用近场瞬态纳米显微镜探测衍射极限以外的激子动力学。作为概念验证演示,研究了单层和双层 MoS 2 中的激子复合和激子-激子湮没过程。此外,通过访问局部位置的能力,可以解决单层-双层界面附近和 MoS 2 纳米皱纹处有趣的激子动力学。如此纳米级的分辨率凸显了这种瞬态纳米显微镜在激子物理基础研究和功能器件进一步优化方面的潜力。
摘要:二维材料可访问光子学的最终物理限制,具有吸引人的超级合理光学组件(例如波格和调节剂)。特别是在单层半导管中,强烈的激子共振导致介电常数从正极到均匀的值急剧振荡。这种极端的光学响应使表面激子 - 磨牙能够引导可见光与原子薄层结合。然而,这种超薄波格 - 支持具有低配置的横向电(TE)模式,并且具有短传播的横向磁性(TM)模式。在这里,我们提出,包括单层WS 2和六角形硝酸硼(HBN)的现实分号 - 导管 - 隔离器 - 隔离器超晶格可以提高TE和TM模式的性质。与单个单层相比,分隔两个单层的1 nm HBN间隔物的异质结构可增强TE模式的配置,从1.2到0.5μm左右,而TM模式的平面外扩展则增加了25至50 Nm。我们提出了两个简单的添加性规则,用于在超薄纤维近似中有效的模式结构,用于异质结构,间隔厚度增加。堆栈 -
摘要:具有原子级精确宽度和边缘结构的石墨烯纳米带 (GNR) 具有半导体特性和高载流子迁移率,是一类很有前途的光电子纳米材料。了解 GNR 中载流子产生的基本静态光学特性和超快动力学对于光电应用至关重要。结合太赫兹光谱和理论计算,我们报告了液相分散 GNR 中强激子效应,结合能高达 ∼ 700 meV,宽度为 1.7 nm,光学带隙为 ∼ 1.6 eV,说明了光生电子和空穴之间固有的强库仑相互作用。通过跟踪激子动力学,我们发现 GNR 中激子的超快形成具有超过 100 ps 的长寿命。我们的研究结果不仅揭示了 GNR 中激子的基本方面(强结合能和超快激子形成等),而且还突出了 GNR 在光电器件中的良好性能。关键词:石墨烯纳米带、激子、激子形成、激子结合能、太赫兹光谱 ■ 简介