微纳米加工是先进制造的重要组成部分,是高端制造水平的标志(Sugioka,2019)。飞秒激光加工技术的出现给微纳米加工领域带来了革命性的变化(Zheng et al.,2020;Mastellone et al.,2020;Xie et al.,2021;Yan et al.,2021;Zhang et al.,2022;He et al.,2022)。飞秒激光具有极窄的脉冲宽度和很高的峰值功率,加工时能量在很短的时间内与材料相互作用(Chichkov et al.,1996;Meng et al.,2019;Hua et al.,2022)。由于其非线性吸收特性,可在焦点处实现真三维高精度加工(Khuat等,2014;Li等,2020)。飞秒激光烧蚀可用于在金属(Davydov and Antonov,2017)、半导体(Ionin等,2012;Li等,2020)、陶瓷(Perrie等,2005)等材料(Gui等,2004;Burghoff等,2006;Lin等,2015)表面制备微纳米结构,展示出其优异的微加工能力。在
摘要。利用飞秒光纤激光器在空气中钻孔和切割微孔。首先,研究了透明(玻璃)和不透明(金属和组织)材料中的微孔钻孔。用光学和扫描电子显微镜对孔的形状和形貌进行了表征和评估。演示了长宽比为 8 ∶ 1 的无碎片、圆度好、无热损伤的微孔。还演示了在硬组织和软组织中钻孔微孔,没有裂纹或附带热损伤。然后,研究了不同材料的沟槽微加工和切割,并研究了激光参数对沟槽性能的影响。获得了笔直、干净的沟槽边缘,没有热损伤。© 作者。由 SPIE 根据知识共享署名 3.0 未移植许可证发布。分发或复制本作品的全部或部分需要完全署名原始出版物,包括其 DOI。 [DOI: 10.1117/1.OE .53.5.051513 ]
摘要。利用飞秒光纤激光器在空气中钻孔和切割微孔。首先,研究了透明(玻璃)和不透明(金属和组织)材料中的微孔钻孔。用光学和扫描电子显微镜对孔的形状和形貌进行了表征和评估。演示了长宽比为 8 ∶ 1 的无碎片、圆度好、无热损伤的微孔。还演示了在硬组织和软组织中钻孔微孔,没有裂纹或附带热损伤。然后,研究了不同材料的沟槽微加工和切割,并研究了激光参数对沟槽性能的影响。获得了笔直、干净的沟槽边缘,没有热损伤。© 作者。由 SPIE 根据知识共享署名 3.0 未移植许可证发布。分发或复制本作品的全部或部分需要完全署名原始出版物,包括其 DOI。 [DOI: 10.1117/1.OE .53.5.051513 ]
摘要。利用飞秒光纤激光器在空气中钻孔和切割微孔。首先,研究了透明(玻璃)和不透明(金属和组织)材料中的微孔钻孔。用光学和扫描电子显微镜对孔的形状和形貌进行了表征和评估。演示了长宽比为 8 ∶ 1 的无碎片、圆度好、无热损伤的微孔。还演示了在硬组织和软组织中钻孔微孔,没有裂纹或附带热损伤。然后,研究了不同材料的沟槽微加工和切割,并研究了激光参数对沟槽性能的影响。获得了笔直、干净的沟槽边缘,没有热损伤。© 作者。由 SPIE 根据知识共享署名 3.0 未移植许可证发布。分发或复制本作品的全部或部分需要完全署名原始出版物,包括其 DOI。 [DOI: 10.1117/1.OE .53.5.051513 ]
这是由Scholarworks@UTEP免费带给您的。已被授权的ScholarWorks@UTEP管理员纳入公开访问论文和论文。有关更多信息,请联系lweber@utep.edu。
1 pfaffenwaldring 9,70569德国Stuttgart 2 Stuttgart Photonic Engineering(Scope)Stuttgart Stuttgart研究中心,Stuttgart,Stuttgart,Pfaffenwaldring 57,70569 Stuttgart,70569 Stuttgart,3 printtix optra, 70176德国Stuttgart 4生物材料与生物分子系统研究所(IBBS),Stuttgart大学,Pfaffenwaldring 57,70569德国Stuttgart,德国5 Stuttgart Research Center Systems Systems Biology(SRCSB) 15,70569德国斯图加特6第4物理学院(PI4),斯图加特大学,pfaffenwaldring 57,70569德国斯图特加特,德国7室内进程工程工程和等离子体技术研究所(IGVP) 12,70569德国斯图加特8 michael.heymann@bio.uni-stuttgart.de * andrea.toulouse@ito.uni.uni-stuttgart.depfaffenwaldring 9,70569德国Stuttgart 2 Stuttgart Photonic Engineering(Scope)Stuttgart Stuttgart研究中心,Stuttgart,Stuttgart,Pfaffenwaldring 57,70569 Stuttgart,70569 Stuttgart,3 printtix optra, 70176德国Stuttgart 4生物材料与生物分子系统研究所(IBBS),Stuttgart大学,Pfaffenwaldring 57,70569德国Stuttgart,德国5 Stuttgart Research Center Systems Systems Biology(SRCSB) 15,70569德国斯图加特6第4物理学院(PI4),斯图加特大学,pfaffenwaldring 57,70569德国斯图特加特,德国7室内进程工程工程和等离子体技术研究所(IGVP) 12,70569德国斯图加特8 michael.heymann@bio.uni-stuttgart.de * andrea.toulouse@ito.uni.uni-stuttgart.depfaffenwaldring 9,70569德国Stuttgart 2 Stuttgart Photonic Engineering(Scope)Stuttgart Stuttgart研究中心,Stuttgart,Stuttgart,Pfaffenwaldring 57,70569 Stuttgart,70569 Stuttgart,3 printtix optra, 70176德国Stuttgart 4生物材料与生物分子系统研究所(IBBS),Stuttgart大学,Pfaffenwaldring 57,70569德国Stuttgart,德国5 Stuttgart Research Center Systems Systems Biology(SRCSB) 15,70569德国斯图加特6第4物理学院(PI4),斯图加特大学,pfaffenwaldring 57,70569德国斯图特加特,德国7室内进程工程工程和等离子体技术研究所(IGVP) 12,70569德国斯图加特8 michael.heymann@bio.uni-stuttgart.de * andrea.toulouse@ito.uni.uni-stuttgart.depfaffenwaldring 9,70569德国Stuttgart 2 Stuttgart Photonic Engineering(Scope)Stuttgart Stuttgart研究中心,Stuttgart,Stuttgart,Pfaffenwaldring 57,70569 Stuttgart,70569 Stuttgart,3 printtix optra, 70176德国Stuttgart 4生物材料与生物分子系统研究所(IBBS),Stuttgart大学,Pfaffenwaldring 57,70569德国Stuttgart,德国5 Stuttgart Research Center Systems Systems Biology(SRCSB)15,70569德国斯图加特6第4物理学院(PI4),斯图加特大学,pfaffenwaldring 57,70569德国斯图特加特,德国7室内进程工程工程和等离子体技术研究所(IGVP)12,70569德国斯图加特8 michael.heymann@bio.uni-stuttgart.de * andrea.toulouse@ito.uni.uni-stuttgart.de
摘要:用超短激光脉冲对透明材料的受控处理需要详细而精确的了解,从激光能量沉积和材料内部能量转化到流体动力学弛豫和机械响应中的各种激光 - 物质相互作用机制。为了解决这个问题,我们首先基于飞秒泵和探针显微镜偏置镜开发了多时间的实验方法。泵是一个360-FS,1-μJ红外(1030 nm)激光脉冲,分开以提供515 nm的飞秒探头,并延迟可调节从飞秒到纳米秒的延迟。获得的时间分辨的阴影图像允许测量瞬态探针传输。然后,载体密度是通过使用Beer-Lambert Law和Drude模型方法来确定的,证明了大部分熔融二氧化硅内部略有临界等离子体的超快形成。并行,定量双折射图像通过使用光弹性定律来测量压力,从而通过发射GPA压力波的发射光弹性定律揭示了吸收的激光能量,这是激光脉冲后几百个picseconds。然后,使用多尺度型物理模型来解释实验观察结果,计算电子动力学,激光传播和流体动力响应。实验验证后,模拟允许确定局部基本材料特性(应力,密度和温度)的时间演变。我们的方法将来可以用来解释由超短激光脉冲引起的机械驱动的透明材料结构。实验和模拟结果的这种组合使我们能够定量讨论不同激光能量弛豫通道在发现整个相互作用情况的材料中的重要性。我们的模型预测20-GPA的最大初始应力载荷,最高晶格温度达到3.5 10 4K。我们还表明,通过发射弱冲击波,消散了总吸收激光能量的〜2%。
在硅中产生荧光缺陷是确保量子光子设备进入现有技术的关键垫脚石。在这里,我们证明了飞秒激光退火的创建,该创建的W and g-Centers in Commercial Silicon上的绝缘体(SOI)先前植入了12 C +离子。它们的质量与使用常规植入过程获得的相同发射器相媲美;通过光致发光辐射寿命来量化,其零孔线(ZPL)的拓宽以及这些定量随温度的进化。除此之外,我们还表明,这两个缺陷都可以在没有碳植入的情况下创建,并且我们可以在增强W-Centers Emision的同时退火来消除G-Centers。这些演示与硅在硅中的确定性和操作生成有关。
相对于激光束。图 2a 描绘了 FLW 过程的图形表示。FLW 是一种串行制造技术,与光刻相比可能并不适合大规模生产。然而,它的速度和简单性使其成为至少在量子技术等快速发展领域中规模生产的有吸引力的选择。可以实现的折射率变化很小,因此设备不如硅或氮化硅等其他平台那么小型化。然而,FLW 因允许三维电路布局(图 2b-c)、与玻璃以外的各种材料兼容(促进复合设备的混合集成)以及与标准光纤的低损耗连接而脱颖而出。FLW 只是通过超短激光脉冲与透明材料的非线性相互作用实现的几种微加工工艺之一。另一个例子是飞秒激光烧蚀,它可以精确去除材料,从而形成三维微结构,如图 2a 所示的微沟槽。将飞秒激光烧蚀与激光烧蚀相结合,可以提高集成光子器件的性能,例如可编程光子集成电路 [5],它集成了波导、电可编程干涉仪和空心结构,从而实现了非常低的
摘要:等离子体驱动的光催化可实现无法通过其他方式实现的反应选择性。热载流子(即金属纳米结构中等离子体衰变产生的电子和空穴)起着根本性的作用,它们与分子物种相互作用。了解这种选择性背后难以捉摸的微观机制是合理设计热载流子反应的关键步骤。为了实现这一点,我们提出了最先进的多尺度模拟,超越了密度泛函理论,对光催化反应速率决定步骤的热载流子注入进行了模拟。我们专注于二氧化碳还原,实验表明,在光照下存在铑纳米立方体会导致选择性地生成甲烷而不是一氧化碳。我们表明,选择性是由于铑向反应中间体 CHO 直接注入空穴(主要是)。出乎意料的是,这种注入并不是通过有利于适当的键断裂来促进选择性反应路径,而是通过促进适当的分子片段与表面结合来促进选择性反应路径。 ■ 简介