结直肠癌(CRC)是全球最普遍,最致命的恶性肿瘤之一。最近,铁铁作用是一种以铁依赖性和脂质过氧化为特征的新型细胞死亡形式,引起了研究人员的显着关注。甲状腺吞噬作用的机制,包括细胞内铁水平,脂质过氧化和抗氧化系统调节,为癌症治疗策略提供了新的见解。这项研究旨在探索在免疫疗法的CRC中,突出其潜在的机制和临床应用的背景下,铁吞作用的新兴作用。我们对当前文献进行了全面的综述,阐明了铁铁毒性的生物学机制,与CRC的关系以及铁铁作用与免疫疗法之间的相互作用。铁凋亡通过调节细胞内铁水平,脂质代谢和抗氧化剂系统来重塑肿瘤微环境(TME),从而显着增强了免疫检查点抑制剂(ICIS)的有效性。同时,中医疗法通过调节TME并诱导铁铁作用来促进抗肿瘤免疫。此外,纳米技术的进步通过实现针对性的递送铁毒性诱导剂或免疫调节剂,将“冷”肿瘤转化为“热”肿瘤并进一步增强ICI效应性,从而促进了精确的治疗。这项研究全面回顾了CRC中的铁毒性,免疫疗法,传统中药和纳米技术的最新发展,强调了与铁毒相关的生物标志物和新颖诱导剂对个性化治疗的重要性。总而言之,铁铁作用提供了一种有前途的策略来克服CRC治疗耐药性并增强免疫疗法效率,保证进一步研究和转化应用。
抽象背景虽然反编程的细胞死亡蛋白1(PD-1)免疫疗法在黑色素瘤治疗,低反应率和耐药性方面非常有效,极大地阻碍了其功效。由干扰素(IFN)-γ触发的肿瘤细胞肥大,源自肿瘤的CD8 + T细胞,极大地有助于免疫疗法的作用。然而,IFN -γ介导的铁凋亡和相关有希望的治疗策略的分子机制需要进一步澄清。microRNA(miRNA)参与了铁毒作用的执行,并且可以由多个载体系统地传递,这些载体对癌症表现出明显的治疗作用。通过RNA测序获得IFN -γ驱动的铁凋亡中的miRNA表达谱。生化测定法被用来阐明miR-21-3p在IFN-γ驱动的铁铁作用和潜在机制中的作用。miR-21-3p加载的金纳米颗粒并系统地应用以分析miR-21-3p在抗链庭移植肿瘤模型中的miR-21-3p在抗PD-1免疫疗法中的作用。首先获得了IFN -γ驱动的铁蛋白中黑色素瘤细胞的miRNA表达谱。然后,通过增强脂质过氧化的增强,上调的miR-21-3p被证明可以促进IFN-γ-介导的毛细毒性。miR-21-3p通过直接靶向硫氧还蛋白还原酶1(TXNRD1)来增强脂质活性氧(ROS)的产生,从而提高了铁凋亡敏感性。此外,通过促进肿瘤细胞屈服促进肿瘤中的miR-21-3p肿瘤中的miR-21-3p过表达与抗PD-1抗体协同。更重要的是,构建了由miR-21-3p负载的金纳米颗粒,并且它们的全身递送增加了抗PD-1抗体在临床前小鼠模型中而没有明显副作用的抗PD-1抗体的功效。最终,发现ATF3在IFN-γ驱动的铁胞菌病中促进miR-21-3p转录。结论miR-21–3 p上调有助于IFN-γ驱动的铁铁作用,并与抗PD-1抗体协同作用。纳米颗粒的miR-21–3 p的递送是一种有前途的治疗方法,可提高免疫疗法的功效而没有明显的全身副作用。
乳腺癌是全球女性最常见的恶性肿瘤之一,其发病率在年轻人群中越来越高。近年来,耐药性已成为乳腺癌治疗的一大挑战,因此,耐药性成为当代研究的焦点,旨在寻找解决这一问题的策略。越来越多的证据表明,通过各种机制诱导铁死亡,特别是通过抑制系统 Xc -、消耗谷胱甘肽 (GSH) 和灭活谷胱甘肽过氧化物酶 4 (GPX4),在克服乳腺癌耐药性方面具有巨大潜力。预计针对铁死亡的疗法将成为逆转肿瘤耐药性的有希望的策略,为乳腺癌患者带来新的希望。本综述将探讨在乳腺癌耐药性背景下理解铁死亡的最新进展,特别强调铁死亡诱导剂和抑制剂的作用,以及铁死亡途径对克服乳腺癌耐药性的影响。
摘要:由于多药的抵抗力和复发的高风险,迫切需要有效且毒性较小的替代性胰腺癌治疗。胰腺癌细胞对细胞凋亡具有高度抗性,但对铁凋亡敏感。在这项研究中,通过在二维(2d)阿森烯纳米片上静电吸附阳离子虹膜络合物(IRFN),开发了创新的纳米平台(ASIR@PDA)。该纳米植物表现出具有高药物载荷能力的高铁诱导作用,并且重要的是,优秀的抗癌免疫激活功能,导致有效消除胰腺肿瘤,没有明显的副作用。有趣的是,ASIR@PDA与载有顺铂的纳米流立面相比,在体内显着预测了胰腺癌的复发。这种设计的纳米植物表现出通过一对一的策略通过免疫疗法进行协同的铁毒性诱导的化学疗法的优势治疗功效,从而为未来的胰腺癌疗法提供了新的见解。
癌症免疫疗法,包括免疫检查点抑制(ICI)和收养免疫细胞治疗,是有希望的治疗策略。他们重新激活免疫细胞的功能,并诱导免疫反应攻击肿瘤细胞。尽管这些新型疗法对大量癌症患者有益,但许多癌症患者表现出公平的反应,甚至对癌症免疫疗法的抵抗力,从而限制了其广泛的临床应用。因此,迫切需要探索癌症免疫疗法的低反应和抵抗力的潜在机制,以增强其治疗效率。已证明包括铁吞作用在内的程序性细胞死亡(PCD)在抗肿瘤免疫和调节ICIS的免疫反应方面起着重要作用。铁凋亡是一种磷脂过氧化介导的铁依赖性膜损伤,表现出三个关键标志:磷脂的氧化,缺乏脂质过氧化脂蛋白修复能力和氧化还原活性铁的过载。值得注意的是,发现铁铁作用在调节肿瘤免疫和对免疫疗法的反应中起着重要作用。因此,单独或与免疫疗法结合靶向铁铁作用可能会提供新颖的选择来促进其抗肿瘤效率。然而,铁凋亡对肿瘤免疫和免疫疗法的影响受铁毒性和癌细胞,免疫细胞,肿瘤微环境(TME)等的相互作用的影响。在这篇综述中,我们总结并讨论了铁凋亡在调节抗肿瘤免疫,TME和改善癌症治疗效率方面的关键作用。
引言:本研究探讨了ZDHHC16在脑卒中(CA)模型中的作用及其可能的机制。材料和方法:从我院收集CA患者。使用小鼠建立大脑中动脉闭塞(MCAO)模型。结果:CA患者的ZDHHC16水平上调。ZDHHC16上调在体外模型中促进炎症并加速线粒体损伤。ZDHHC16基因上调促进神经细胞铁死亡。抑制ZDHHC16可预防小鼠脑卒中。ZDHHC16上调通过促进CREB泛素化与CREB相互连接来抑制CREB。CREB激动剂抑制了体外模型中ZDHHC16上调的影响。 CREB 抑制剂在体外模型中抑制了 ZDHHC16 下调的影响。结论:我们得出结论,ZDHHC16 通过抑制 CREB 促进 CA 模型中的铁死亡和炎症。该发现可能对 CA 或其他神经系统疾病的治疗有益。
*地址通信:朱莉娅·施莱茨基(Julia Schaletzky),jschaletzky@berkeley.edu,James A. Olzmann,olzmann@berkeley.edu。作者贡献J.M.H.,K.B.,J.A.O。和J.S.构思了该项目并设计了实验。J.M.H. 和J.A.O. 写了手稿。 所有作者都阅读,编辑并为手稿做出了贡献。 J.M.H. 进行了大多数实验。 J.M.H.,K.B。和E.W. 进行了小分子筛选并分析了数据。 Z.L. 进行了球体测定。 J.M.H. 和M.R. 进行了脂质过氧化测定法。 I.L.O. 有助于分析黑色素瘤系。 J.M.H. 和M.A.R. 进行了Bodipy C11实验。 S.J.D.,K.K.D.和M.L. 提供了关键的试剂和指导。 C.E.D.,J.M.H。和K.B. 纯化的蛋白质并对FSP1活性进行了体外分析。 J.D.M. 进行并分析了FSEN1药代动力学和微粒体稳定性实验。J.M.H.和J.A.O.写了手稿。所有作者都阅读,编辑并为手稿做出了贡献。J.M.H. 进行了大多数实验。 J.M.H.,K.B。和E.W. 进行了小分子筛选并分析了数据。 Z.L. 进行了球体测定。 J.M.H. 和M.R. 进行了脂质过氧化测定法。 I.L.O. 有助于分析黑色素瘤系。 J.M.H. 和M.A.R. 进行了Bodipy C11实验。 S.J.D.,K.K.D.和M.L. 提供了关键的试剂和指导。 C.E.D.,J.M.H。和K.B. 纯化的蛋白质并对FSP1活性进行了体外分析。 J.D.M. 进行并分析了FSEN1药代动力学和微粒体稳定性实验。J.M.H.进行了大多数实验。J.M.H.,K.B。和E.W. 进行了小分子筛选并分析了数据。 Z.L. 进行了球体测定。 J.M.H. 和M.R. 进行了脂质过氧化测定法。 I.L.O. 有助于分析黑色素瘤系。 J.M.H. 和M.A.R. 进行了Bodipy C11实验。 S.J.D.,K.K.D.和M.L. 提供了关键的试剂和指导。 C.E.D.,J.M.H。和K.B. 纯化的蛋白质并对FSP1活性进行了体外分析。 J.D.M. 进行并分析了FSEN1药代动力学和微粒体稳定性实验。J.M.H.,K.B。和E.W.进行了小分子筛选并分析了数据。Z.L.进行了球体测定。J.M.H. 和M.R. 进行了脂质过氧化测定法。 I.L.O. 有助于分析黑色素瘤系。 J.M.H. 和M.A.R. 进行了Bodipy C11实验。 S.J.D.,K.K.D.和M.L. 提供了关键的试剂和指导。 C.E.D.,J.M.H。和K.B. 纯化的蛋白质并对FSP1活性进行了体外分析。 J.D.M. 进行并分析了FSEN1药代动力学和微粒体稳定性实验。J.M.H.和M.R.进行了脂质过氧化测定法。I.L.O. 有助于分析黑色素瘤系。 J.M.H. 和M.A.R. 进行了Bodipy C11实验。 S.J.D.,K.K.D.和M.L. 提供了关键的试剂和指导。 C.E.D.,J.M.H。和K.B. 纯化的蛋白质并对FSP1活性进行了体外分析。 J.D.M. 进行并分析了FSEN1药代动力学和微粒体稳定性实验。I.L.O.有助于分析黑色素瘤系。J.M.H. 和M.A.R. 进行了Bodipy C11实验。 S.J.D.,K.K.D.和M.L. 提供了关键的试剂和指导。 C.E.D.,J.M.H。和K.B. 纯化的蛋白质并对FSP1活性进行了体外分析。 J.D.M. 进行并分析了FSEN1药代动力学和微粒体稳定性实验。J.M.H.和M.A.R.进行了Bodipy C11实验。S.J.D.,K.K.D.和M.L. 提供了关键的试剂和指导。 C.E.D.,J.M.H。和K.B. 纯化的蛋白质并对FSP1活性进行了体外分析。 J.D.M. 进行并分析了FSEN1药代动力学和微粒体稳定性实验。S.J.D.,K.K.D.和M.L.提供了关键的试剂和指导。C.E.D.,J.M.H。和K.B. 纯化的蛋白质并对FSP1活性进行了体外分析。 J.D.M. 进行并分析了FSEN1药代动力学和微粒体稳定性实验。C.E.D.,J.M.H。和K.B.纯化的蛋白质并对FSP1活性进行了体外分析。J.D.M. 进行并分析了FSEN1药代动力学和微粒体稳定性实验。J.D.M.进行并分析了FSEN1药代动力学和微粒体稳定性实验。
1 美国密歇根州安娜堡密歇根大学医学院外科系 2 美国密歇根州安娜堡密歇根大学罗格尔癌症中心癌症免疫学和免疫治疗卓越中心 3 美国密歇根州安娜堡密歇根大学免疫学研究生课程 4 美国密歇根州安娜堡密歇根大学医学院计算医学与生物信息学系 5 美国密歇根州安娜堡密歇根大学医学院内科系 6 韩国城南市 CHA 大学 CHA 盆唐医疗中心内科系 7 美国密歇根州安娜堡密歇根大学医学院分子与整合生理学系 8 美国密歇根州安娜堡密歇根大学医学院药理学系 9 美国德克萨斯州休斯顿德克萨斯大学休斯顿健康科学中心布朗基金会分子医学研究所德克萨斯治疗研究所 10密歇根大学医学院药物化学系,美国密歇根州安娜堡 11 密歇根大学医学院病理学系,美国密歇根州安娜堡 12 密歇根大学癌症生物学研究生课程,美国密歇根州安娜堡 13 主要联系人 *通信地址:wzou@umich.edu https://doi.org/10.1016/j.ccell.2024.10.010
肾缺血再灌注 (I/R) 损伤可导致肾功能不全,严重情况下需要肾脏替代治疗,给患者的康复和生活带来沉重负担。减轻肾脏 I/R 损伤是当前的研究重点。蛋白激酶 C (PKC) 同工酶是肾脏中的主要同工酶,PKCβII 是其主要同工酶。铁死亡在肾脏 I/R 导致的急性肾损伤中起着至关重要的作用。本研究旨在探索 PKCβII 在肾脏 I/R 中的作用及其与铁诱导细胞死亡的潜在关联。该研究使用小鼠肾脏 I/R 模型,检查了各种预处理方法(包括 Ruboxistaurin(一种 PKCβII 抑制剂)和 Erastin(一种铁死亡激动剂))对肾脏损伤的影响。该研究还深入探讨了 PKCβII 在铁诱导细胞死亡中的作用及其潜在机制。研究结果表明,PKCβII 在肾脏 I/R 过程中被激活,抑制 PKCβII 激活可改善肾功能障碍和组织损伤。此外,肾脏 I/R 损伤中铁诱导的细胞死亡显著增加,而抑制 PKCβII 可通过抑制 PKCβII/ACSL4 通路来减轻铁死亡。总之,结果表明 PKCβII 可能参与介导肾脏 I/R 损伤,而针对性抑制 PKCβII 激活可能成为改善肾脏 I/R 损伤的一种新疗法。
Xu Zha,1,2,5 Xicheng Liu,1,2,5, * Mengping Wei,1 Huanwei Huang,1 Jiaqi Cao,1 Shuo Liu,1 shuo liu,1 xiaomei bian,1 Yuting Zhang,1 Yuting Zhang,1 Fenyan hang,1 Fenyan hang,1 fenyan xiao,1 yuping xie of them,3 wei s extart of tastion zie,3 wei s z wang,1,1,1,1,1,1,1,1,1,1,1,1, *科学,北京神经再生与修复与北京肿瘤入侵和转移的关键实验室,北京口腔健康实验室,首都医科大学,北京,中国2个国家肿瘤药物开发的国家主要实验室,南京,南京中国北京的生命分子学4中国大脑研究所,中国北京5这些作者同样贡献了6个领导联系 *通信:liuxicheng@ccmu.edu.edu.cn(X.L.),wangwei@ccmu.edu.cn(W.W.),czhang@ccmu.edu.cn(c.z。)https://doi.org/10.1016/j.cmet.2024.10.006https://doi.org/10.1016/j.cmet.2024.10.006