抽象量子计算是一种信息处理范式,它使用量子力学属性来加速构成综合问题。基于门的量子计算机和量子退火器(QAS)是当今用户可以访问的两个商业上可用的硬件平台。尽管很有希望,但现有的基于门的量子计算机仅由几十个Qubits组成,对于大多数应用来说,量子不够大。另一方面,现有的QA具有数千个量子位的QA有可能解决某些领域的优化问题。QAS是单个指令机,并且要执行程序,将问题扔给了Hamiltonian,嵌入了硬件上,并且运行了单个Quanth Machine指令(QMI)。不幸的是,硬件中的噪声和瑕疵也会在QAS上进行次优的解决方案,即使QMI进行了数千个试验。QA的有限可编程性意味着用户对所有试验执行相同的QMI。在整个执行过程中,这对所有试验进行了类似的噪声验证,从而导致系统偏见。我们观察到系统偏见会导致亚最佳解决方案,并且不能通过执行更多试验或使用现有的减轻误差方案来缓解。为了应对这一挑战,我们提出了相等的(e nosemel qu antum a nnea ling)。均等通过向程序QMI添加受控的扰动来生成QMI的集合。在质量检查上执行时,QMI的合奏会导致该程序在所有试验中都遇到相同的偏见,从而提高了解决方案的质量。我们使用2041 Qubit d-Wave QA的评估表明,相等的桥接基线和理想之间的差异平均为14%(最高26%),而无需进行任何其他试验。可以将相等的相等与现有的缓解误差方案相结合,以进一步弥合基线和理想之间的差异55%(高达68%)。
量子随机访问存储器(QRAM)被认为是必不可少的计算单元,可以在量子信息处理中实现多名速度。建议的实现包括使用中性原子和超导电路来构建二进制树,但这些系统仍然需要证明基本组件。在这里,我们提出了一个与固态记忆集成的光子集成电路(PIC)结构,作为构造QRAM的可行平台。我们还提出了一种基于量子传送的替代方案,并将其扩展到量子网络的背景。这两个实现都意识到了两个关键的QRAM操作,(1)量子状态传输和(2)量子路由,并具有已证明的组件:电气调节器,一个Mach-Zehnder干涉仪(MZI)网络,以及与人工原子相连的基于自旋记忆的记忆和固定的纳米腔。我们的方法从基于光子先驱的内置误差检测中获得了好处。详细介绍了QRAM的效率和查询效果的理论分析表明,我们的建议为一般QRAM提供了可行的近期设计。
医疗保健模拟中“实现”的定义仍然是辩论的重要问题。的保真度本质上是多因素概念(4)。它是指感觉相似(听觉,视觉,触觉)以及功能相似之处,因此取决于上下文和学习目标。在手术模拟中,有限态度经常被简化为“面部有效性”(即模拟器“看起来像”现实),甚至更降低到视觉相似之处。“面部有效性”的基本概念 - 即,对用户的感知有助于模拟器的信誉,对它的粘附以及增强信息的保留和转移到实践的相关性 - 但视觉上相似(与解剖结构的形状和颜色非常相似),这并不是为了评估Aurgical Simulator aurgical Simulator anderimentiments obery simulator。这就是为什么“面部有效性”不是教育和心理测试和手册标准的一部分(2),即使它继续被错误使用。实际上,Paige和Morin(4)定义了有限的三个维度,并根据以下内容提出了一个“实现矩阵”:
此咨询通函(AC)提供了指导和一种全面的方法,可以根据《联邦法规法典》第14条(14 CFR)§450.115进行高保真飞行安全分析。根据第450.113(a)条的规定,需要进行飞行安全分析。AC 450.113-1(富达水平)提供了有关何时需要进行高保真飞行安全性分析以及如何确定所需忠诚度的指导。在需要高保真飞行安全分析的情况下,此AC 450.115-1为执行该分析的指导提供了符合§450.115(b)的指导。对于特定阶段或飞行的所有阶段,可能需要第450.115(b)条的高保真飞行安全分析。操作员的飞行安全分析方法必须说明所有可预见的事件以及在象征性和非社会化发射期间安全至关重要系统的失败,或者根据§450.115(a)可能会危及公共安全。根据第450.115(b)(1)条的规定,分析必须证明,公众的任何风险都符合第450.101节的安全标准,包括使用缓解,并考虑所有已知的不确定性来源,使用联邦航空管理局(FAA)接受的合规性手段(FAA)。分析必须在§§450.101(a)或450.101(b)中确定每种类型的公共风险的主要来源,以飞行阶段,危险来源(例如有毒曝光,惰性碎屑或爆炸性碎屑)和失败模式,以及符合第450.115(b)(b)(b)(2)。
摘要:Dnazymes已被广泛用于许多传感和成像应用中,但是自1994年发现以来,很少使用基因工程,因为它们的底物范围主要限于单链DNA或RNA,而遗传信息则存储在双链DNA(DSDNA)中。为了克服这一主要局限性,我们在这里报告了肽核酸(PNA)辅助双链DNA通过dnazymes(Panda)辅助的DNA迹象,这是将Dnazyme活性扩展到DSDNA的第一个例子。我们表明,熊猫在有效划痕或导致靶dsDNA上有双链破裂是可以编程的,靶DsDNA模仿了蛋白质核酸酶,并且可以充当分子克隆中的限制酶。除了比蛋白质酶小得多,在我们测试的条件下,熊猫还具有更高的序列保真度,这证明了其作为基因工程和其他生化应用的新型替代工具的潜力。
作者的完整列表:Simonoff,Ethan;加利福尼亚理工学院,洛伦佐化学范·穆诺兹(Van Munoz);加利福尼亚理工学院,内森·刘易斯;加利福尼亚技术,化学和化学工程研究所
具有高电子迁移率的二维硒化铋 (Bi 2 O 2 Se) 在未来高性能、柔性电子和光电子器件中具有优势。然而,薄片 Bi 2 O 2 Se 的转移相当具有挑战性,限制了其机械性能的测量和在柔性器件中的应用探索。这里,开发了一种可靠有效的聚二甲基硅氧烷 (PDMS) 介导方法,可以将薄片 Bi 2 O 2 Se 薄片从生长基板转移到目标基板(如微机电系统基板)上。转移的薄片的高保真度源于 PDMS 薄膜的高粘附能和柔韧性。首次通过纳米压痕法实验获得了二维 Bi 2 O 2 Se 的机械性能。研究发现,少层 Bi 2 O 2 Se 具有 18–23 GPa 的二维半导体固有刚度,杨氏模量为 88.7 ± 14.4 GPa,与理论值一致。此外,少层 Bi 2 O 2 Se 可承受 3% 以上的高径向应变,表现出优异的柔韧性。二维 Bi 2 O 2 Se 的可靠转移方法和力学性能记录的开发共同填补了这种新兴材料力学性能理论预测与实验验证之间的空白,并将促进基于二维 Bi 2 O 2 Se 的柔性电子学和光电子学的发展。
摘要 - 保留信息传输至关重要。然而,随着迅速开发强大的量子技术,常规的加密技术每天都越来越容易发作。量子密码学领域中的新技术逐渐逐渐出现。现在重要的是密码学的确定性,因为如果不正确,具有庞大处理能力的安全性不值得。着眼于这个问题,我们提出了一种使用最大纠缠量子对增强量子加密的方法。为此,我们沿着一条由IBMQX4和IBMQ 16墨尔本的所有量子组组成的路径创建了一个图形状态,并使用量子对的负测量测量来测量纠缠的强度。然后,使用具有最大纠缠的量子位,我们将修改后的加密密钥发送到接收器。键是通过传输前的置换和超密度编码来修改的。接收器恢复过程并获取实际键。我们在IBM量子体验项目中进行了完整的实验。我们的结果表明,与随机选择的量子位相比,加密和解密的最终性高15%至20%。索引术语 - 确定性,量子密码学,纠缠,限制
第一台 Link Trainer。该设备有一套基本的仪器、一个原始的运动平台,没有视觉显示器 (Lee, 2009)。第二次世界大战爆发后,Link Trainer 被整合到飞行训练中并得到广泛使用。当时,训练事故率相当高,使用模拟器降低飞机事故率被认为是合乎逻辑的结果 (Valverde, 1973)。模拟器替代飞机的训练价值是直观的,基于常识 (Lee, 2009)。战后,由于战争期间的许多技术进步,模拟器取得了快速发展。模拟计算机的发展对这一发展至关重要。然而,飞行模拟器的学术研究直到 1949 年左右才开始 (Valverde, 1973)。这些研究今天仍在认真进行。
基因组编辑对于医学和研究目的都具有重要价值。未来的医学应用包括纠正与疾病相关的突变、破坏致病基因,甚至引入新基因(例如,使免疫系统对肿瘤细胞敏感)。研究应用范围从在细胞系或生物体中创建敲除/敲除,和/或引入突变,以研究特定蛋白质、通路或过程的作用,到创建人源化疾病模型。鉴于实际应用的诱人范围,人们在开发基因组编辑方法方面付出了相当大的努力也就不足为奇了。引入基因组变化的传统方式是使用自发重组,要么引入 DNA 突变,要么插入允许进一步使用重组酶(如 Cre)切除基因的序列 [参见 Sauer (2002) 的评论]。随后,锌指核酸酶 (ZFN) 和转录激活因子样效应物核酸酶 (TALEN) 的发现,使得该领域取得了长足的进步,因为它们可以在所需的基因组位置而不是随机的位置引入 DNA 断裂 [参见 Gaj 等人 (2013) 的综述]。尽管如此,基因组编辑领域最大的进步是最近发现的成簇的规律间隔回文重复 (CRISPR) 相关 (Cas) 系统 (Ishino 等人,1987 年;Jansen 等人,2002 年;Jinek 等人,2012 年;Cong 等人,2013 年;Mali 等人,2013 年)。