1 简介 隔离器是一种电子设备,它向控制器传输数字信号,同时还提供电流隔离,为用户界面和低压电路提供安全的电压水平。它们具有广泛的应用,包括工业、汽车、消费和医疗电子产品,每种产品都需要特定的最低隔离水平。隔离的基本形式是由光耦合、电容耦合和磁耦合提供的 [1]。隔离器必须通过多项监管标准才能投放市场。这些标准包括可靠性测试,如耐压和浪涌电压以及高压耐久性 (HVE)。耐压和浪涌电压是相对较快的持续时间测试,但 HVE 可能需要几个月到几年才能完成 [2]。本研究基于对磁耦合隔离器中使用的材料的隔离能力的评估。为了更好地管理隔离器的可靠性测试,最好事先优化组件材料。在这项工作中,我们讨论了加工效应对隔离器中使用的各种材料的影响,并
金属有机框架是一类多孔材料,在微电子领域显示出有希望的特性。为了达到这些材料的工业用途,通常首选气相技术,并最近引入。但是,所达到的厚度是不够的,限制了进一步的发展。在这项工作中,描述了允许使用环状配体/水暴露的数百个NM形成数百个NM的改进的气相过程。然后,通过深入的表面分析和分子动力学模拟的组合,建立了羟基缺陷在ZIF-8层中的存在和作用,以达到这种厚度。同时,这项研究揭示了该方法的固有限制:厚度生长是结合的,缺陷在晶体成熟时修复;这种缺陷修复最终导致孔窗窗口的下降下方的孔窗口的扩散半径下降,因此显然可以通过这种生长方法来限制这类材料拓扑的最大MOF厚度。
摘要近年来,范德华(Van der Waals)材料中表面声子极地(SPHP)的激发受到了纳米光子学界的广泛关注。alpha相钼三氧化物(α-MOO 3),一种天然存在的双轴双曲晶体,由于其在不同波长带的三个正交指导下支持SPHP的能力(范围10-20 µM),因此出现是一种有前途的极性材料。在这里,我们报告了大面积(超过1 cm 2尺寸)的制造,结构,形态和光学IR表征,α -moo 3多晶膜通过脉冲激光沉积沉积在熔融二氧化硅底物上。由于随机晶粒分布,薄膜在正常发生率下未显示任何光学各向异性。但是,提出的制造方法使我们能够实现单个α相,从而保留与α -moo 3片的语音响应相关的典型强分散体。报告了IR光子学应用的显着光谱特性。例如,在1006 cm -1处具有极化的反射峰,动态范围为∆ r = 0.3,共振Q因子在45°的入射角下观察到高达53的共振Q。此外,我们报告了SIO 2底物的阻抗匹配条件的实现,从而导致独立于极化的几乎完全完美的吸收条件(R <0.01)在972 cm-1处,该条件可维持以较大的入射角维持。在此框架中,我们的发现似乎非常有前途的,对于使用远场检测设置,用于有效和大规模的传感器,滤镜,过滤器,热发射器和无标签的生物化学传感设备,用于进一步开发无IR线印刷膜,可扩展的膜,用于高效和大规模的传感器,过滤器,热发射器和无标签的生化感应设备。
光射流。典型的光阳极,dibenzo [b,d]噻吩磺酸(FSO)单体,与额外的富含电子或电子decoient coenters共同聚合,即,苯烯,吡啶基,吡咯乙烯和四苯二苯,形成d - 一个基序。此外,制备了FSO的均聚物,发现水是水氧化的最高性能。随后,该FSO光阳极进一步用于氧化有机合成。我们能够将光阳极用于两个模型反应;特定的cally,通过氧化苯胺的氧化和通过甲基苯基硫DE的氧化和相应的选择性合成N-苯二烯苯甲酰胺的合成,并分别实现了高达92%和99%的选择性。进行了稳态和操作测量中的测量,以建立结构 - 聚商结构之间的性质关系及其在光阳性反应中的性能。在这些系统中,主动位点确定了这种转换的速率:通过测量结果,我们确定FSO光轴在其磺基群上积累光激发电荷有效,从而为氧化反应带来了最佳性能。这项工作是一项概念验证研究,用于采用成本效率的聚合物半导体通过常规合成来构建PEC系统。此外,它突出了设计聚合物结构的战略方法,从而改善了有机合成的太阳能转换以及选择性和产量。
了解结构和电子对称性破坏在基于Fe的高温超导体中的相互作用仍然引起了人们的关注。在这项工作中,我们使用分子束外延在一系列厚度中种植了应变的多层FESE薄膜。我们使用扫描隧道显微镜和光谱法研究了电子列区域和空间变化应变的形成。我们直接可视化边缘的形成,从而导致膜中的二维边缘脱位网络。有趣的是,我们观察到位错网络的45度内部旋转是膜厚度的函数,从而沿不同方向产生抗对称应变。这会导致电子列域和反对称应变之间的耦合比不同。最后,我们能够通过揭示两个区域之间差分电导图的较小能量依赖性差异来区分不同的正交列域。这可以通过轨道选择性尖端样本隧道来解释。我们的观察结果为外延薄膜中的脱位网络形成带来了新的见解,并提供了另一个纳米级工具来探索基于Fe的超导体中的电子nematicity。
抽象的带有高分子量的薄薄聚合物膜在玻璃转变温度下显示出异常降低,膜厚度。特别是在这样的材料中,测得的玻璃过渡温度以膜厚度的方式演变,其斜率弱取决于分子量。de gennes提出了一种滑动机制,作为这些系统中假设的主要放松过程,在这些系统中,压力扭结可以通过所谓的桥梁以类似仓库的方式传播,即从一个自由界面到另一个界面,沿聚合物大分子的骨干。在这里,通过考虑有限大小的随机步行的确切统计数据,我们将详细研究桥梁假设。我们表明,滑动机制无法重现实验中出现的基本特征,并且我们表现出了这一事实背后的基本原因。
从考虑分销及其中断的考虑中,作为一种有价值的电影制作方法,以了解受众和行业之间的复杂关系(Lobato和Ryan,2011年,2011年,第189页),我们将分析恐怖电影在不断变化的电影分发景观,尤其是数字分销中的作用,尤其是在21世纪的前两十年中。我们认为,恐怖类型一直是窗户系统核心局限性的富有成果的测试,从减少戏剧和家庭发行之间的延迟到按需视频的各种可能性(VOD)(Tompkins,2014年)。我们的研究表明,恐怖类型已经领导着正式分销的不同暂定趋势,在某些情况下,整个电影业的重要转变。
摘要:由有机半导体和无机量子点 (QD) 组成的混合物适用于许多光电应用和设备。然而,有机 QD 混合物中的各个组分在薄膜加工过程中很容易聚集和相分离,从而损害其结构和电子特性。在这里,我们展示了一种 QD 表面工程方法,该方法使用与有机半导体主体材料相匹配的电子活性、高溶解度半导体配体来实现分散良好的无机 - 有机混合薄膜,其特征是通过 X 射线和中子散射以及电子显微镜来表征的。这种方法保留了有机相和 QD 相的电子特性,并在它们之间创建了优化的界面。我们在两个新兴应用中对此进行了举例说明,即基于单线态裂变的光子倍增 (SF-PM) 和基于三线态 - 三线态湮没的光子上转换 (TTA-UC)。稳态和时间分辨光谱表明,三线态激子可以以接近 1 的速度高效地跨有机 - 无机界面传输,而有机薄膜在有机相中保持高效的 SF(产率为 190%)。通过改变有机和无机成分之间的相对能量,在 790 nm NIR 激发下观察到黄色上转换发射。总体而言,我们提供了一种高度通用的方法来克服有机半导体与 QD 混合的长期挑战,这对许多光学和光电应用都具有重要意义。■ 简介
摘要:由有机半导体和无机量子点 (QD) 组成的混合物适用于许多光电应用和设备。然而,有机 QD 混合物中的各个组分在薄膜加工过程中很容易聚集和相分离,从而损害其结构和电子特性。在这里,我们展示了一种 QD 表面工程方法,该方法使用与有机半导体主体材料相匹配的电子活性、高溶解度半导体配体来实现分散良好的无机 - 有机混合薄膜,其特征是通过 X 射线和中子散射以及电子显微镜来表征的。这种方法保留了有机相和 QD 相的电子特性,并在它们之间创建了优化的界面。我们在两个新兴应用中对此进行了举例说明,即基于单线态裂变的光子倍增 (SF-PM) 和基于三线态 - 三线态湮没的光子上转换 (TTA-UC)。稳态和时间分辨光谱表明,三线态激子可以以接近 1 的速度高效地跨有机 - 无机界面传输,而有机薄膜在有机相中保持高效的 SF(产率为 190%)。通过改变有机和无机成分之间的相对能量,在 790 nm NIR 激发下观察到黄色上转换发射。总体而言,我们提供了一种高度通用的方法来克服有机半导体与 QD 混合的长期挑战,这对许多光学和光电应用都具有重要意义。■ 简介
元素金属薄膜在现代电子纳米器件中起着非常重要的作用,可用作传导通路、间隔层、自旋电流发生器/探测器以及许多其他重要功能。在这项工作中,通过利用固体金属有机源前体的化学性质,我们展示了元素 Ir 和 Ru 金属薄膜的分子束外延合成。当金属有机前体在基底表面分解时,通过对金属相的热力学和动力学选择,可以合成这些金属。采用原位和非原位结构和成分表征技术相结合的方式,研究了不同条件下的薄膜生长。在前体吸附、分解和晶体生长的背景下,讨论了基底温度、氧反应性和前体通量在调整薄膜成分和质量方面的重要作用。计算热力学将金属或氧化物形成的驱动力量化为合成条件和化学势变化的函数。这些结果表明,体热力学是低温下 Ir 金属形成的合理原因,而 Ru 金属的形成可能是由动力学介导的。