Cvijanovic, M., Kirin, P., Plesa, D., Soko, J., Stamenov, S., Cikojevic, A., Kelemen,
• Includes NXP ISO/IEC14443-A and Innovatron ISO/IEC14443-B intellectual property licensing rights • High-performance multi-protocol NFC frontend for transfer speed up to 848 kbit/s • Supports ISO/IEC 14443 type A, MIFARE Classic and ISO/IEC 14443 B modes • Supports MIFARE Classic product encryption by hardware in读/写模式允许基于Mifare Ultralight,具有1 KB内存的Mifare Classic,具有4 KB内存的Mifare Classic,Mifare Desfire EV1,Mifare Desfire ev2和Mifare Plus ICS。• Low-power card detection • Compliance to "EMV contactless protocol specification V2.3.1" on RF level can be achieved • Antenna connection with minimum number of external components • Supported host interfaces: – SPI up to 10 Mbit/s – I 2 C-bus interfaces up to 400 kBd in Fast mode, up to 1000 kBd in Fast mode plus – RS232 Serial UART up to 1228.8 kBd, with voltage levels dependent on pin voltage supply • Separate I 2 C-bus interface for connection of a secure access module (SAM) • FIFO buffer with size of 512 byte for highest transaction performance • Flexible and efficient power saving modes including hard power down, standby and low-power card detection • Cost saving by integrated PLL to derive system clock from 27.12 MHz RF quartz crystal • 3 V to 5.5 V power supply (MFRC63102) 2.5 V to 5.5 V power supply (MFRC63103) • Up to 8 free programmable input/output pins • Typical operating distance in read/write mode for communication to a ISO/IEC 14443 type A and MIFARE Classic card up to 12 cm, depending on the antenna size and tuning The version CLRC63103 offers a more flexible configuration for Low-Power Card detection compared to the clrc63102带有新寄存器LPCD_OPTIONS。此外,CLRC63103为负载协议提供了新的附加设置,这些设置非常适合较小的天线。因此,CLRC63103是新设计的推荐版本。
许多新兴的生物传感应用 [1]、[2] 以及增强现实应用的人机界面 [3] 都依赖于巨磁电阻 (GMR) 传感器,因为它们具有良好的灵敏度和低 1/f 噪声。作为替代方案,隧道磁电阻 (TMR) 传感器由于其更高的磁阻 (MR) 比可以提供比 GMR 传感器更好的灵敏度。然而,如此高的 MR 比对接口电子设备提出了严格的要求,因为它们的基极电阻变化很大。这种变化会导致放大器输入端出现较大的电压偏移,从而减小放大器的动态范围,在最坏的情况下,如果不进行补偿,会导致前端饱和。消除放大器输入直流偏移的一个可能解决方案是使用斩波电容耦合仪表放大器 (CCIA) 与直流伺服环路 (DSL) [4],参见图 1a。然而,这种方法需要在放大器的输入参考电压噪声和 DSL 可以补偿的最大偏移之间进行权衡。更具体地说,可以通过增加 C DSL 来补偿更高的输入偏移,而这又会增加 CCIA 的输入参考电压噪声 [5]。作为一种替代方案,图 1b 显示了使用跨阻放大器 (TIA) 处理产生的电流 [2] 的可能性。在这种方案中,通常需要辅助电阻
我是专业的前端网络开发人员,喜欢设计与未来派UI/UX的最新接口。与此一起,我为iOS和Android开发了本机应用程序。我也喜欢在我工作的所有领域中纳入AI和ML技术。为了将来,我想致力于将Frontend与VR和AR集成的技术。
摘要 - 在多用户移动AR应用程序中确保精确的实时本地化并确保鲁棒性是关键挑战。利用协作信息来增强轻量级设备的跟踪准确性,并强化整体系统的鲁棒性是至关重要的。在本文中,我们提出了一个可靠的集中式协作多代理VI-SLAM系统,用于移动AR交互和服务器端有效的一致映射。该系统在移动设备上部署了轻巧的VIO前端,以进行实时跟踪,并在远程服务器上运行的后端以更新多个子包。当检测到跨代理之间的跨代理之间的重叠区域时,系统执行子束融合以建立全球一致的图。此外,我们提出了一个基于在线注册和融合的多代理场景中的可覆盖率领域的地图注册和融合策略。为了提高前端对代理的跟踪准确性,我们介绍了一种策略,以将全局地图更新为本地地图,以中等频率的摄像机率姿势估计前端VIO和低频全局地图优化,使用紧密耦合的策略,以实现全局图中的多代数前端估计的一致性。通过在服务器上执行后端映射并在多个移动设备上部署VIO前端以进行AR排除,从而进一步确认了所提出的方法的有效性。此外,我们通过分析代理和服务器结束的网络流量,同步频率以及其他因素来讨论提出系统的可扩展性。
摘要。校园内具有开环地热系统流出流的新建筑物为学生驱动的环境化学课程提供了有力的背景。在不到一年的时间里,沿溪流前端的岩石已经开始变成橙色(Rusty),这已成为学生中的好奇心。结果,通过沿流的原子吸收光谱法监测铁和钙浓度,以研究金属沉积过程。沿流沿流中的岩石,流中铁和钙浓度的氧化铁沉积沿流。正如预期的那样,河流和钙的浓度下降了溪流,较小的装饰瀑布后,浓度下降的浓度特别较大。沉积在岩石上的氧化铁的浓度也以与河流溶解的铁下降相似的速度下降,这强烈表明岩石上的沉积是去除铁的主要模式。在运行不到一年的时间里,铁和钙的浓度在进入溪流后立即开始下降,表明该流的前端尚未饱和。环境化学课程计划在随后的几年中重复这些研究,以监视/何时何时饱和,并且沉积过程开始向下游移动。
摘要:使用飞秒激光研究了为 MONOLITH H2020 ERC Advanced 项目生产的第二个单片硅像素原型的时间分辨率。ASIC 包含一个间距为 100 μ m 的六边形像素矩阵,由低噪声和非常快速的 SiGe HBT 前端电子设备读出。使用厚度为 50 μ m 的外延层、电阻率为 350 Ω cm 的硅晶片来生产完全耗尽的传感器。在测试的最高前端功率密度 2.7 W/cm 2 下,发现飞秒激光脉冲的时间分辨率对于由 1200 个电子产生的信号为 45 ps,对于 11k 个电子则为 3 ps,这大约相当于最小电离粒子产生的电荷最可能值的 0.4 倍和 3.5 倍。将结果与使用同一原型获取的测试光束数据进行比较,以评估电荷收集波动产生的时间抖动。