本文介绍了用于空间数据链路应用的 GaAs 行波电光调制器阵列的设计注意事项。调制器设计的核心是低损耗折叠光学配置,可在设备的一端提供直接的直线射频 (RF) 接入,而所有光纤端口均位于另一端。此配置是多通道应用所需的密集单片调制器阵列的关键推动因素。它还可以实现更紧凑的封装、改进的光纤处理,并通过消除 RF 馈电装置中的方向变化来实现高调制带宽和低纹波。单个 Mach-Zehnder (MZ) 和单片双并行 (IQ) 调制器都已评估高达 70 GHz,带宽约为 50 GHz,低频开/关电压摆幅 (V π ) 为 4.6 V(电压长度乘积为 8.3 Vcm)。折叠式设备比传统的“直线式”调制器要紧凑得多,而适度的设备阵列(例如 × 4)可以容纳在与单个调制器尺寸相似的封装中。讨论了独立寻址 MZ 调制器单片阵列(每个都有自己的输入光纤)的设计考虑因素,并提出了实用配置。
摘要 — 本文介绍了一种宽调谐范围双模毫米波 (mm-wave) 压控振荡器 (VCO),该振荡器采用了基于高品质因数 (Q) 变压器的可变电感器。通过构建高 Q 固定电容器变压器负载与无损开关结构串联,提出了一种具有两个不同值的高 Q 开关电感器,该无损开关结构不会像通过改变电容器上的信号模式那样给 LC 谐振回路增加任何损耗。通过为每种模式选择合适的中心频率和足够的频率重叠,可以设计宽频率调谐范围 (FTR) 毫米波 VCO。它提供了几乎两倍的调谐范围,同时保持相位噪声 (PN) 与使用两个独立电感器设计的双模 VCO 几乎相同。该 VCO 采用 65 nm CMOS 工艺制造,在 64.88 至 81.6 GHz 范围内测得的 FTR 为 22.8%。测量的 10 MHz 偏移处的峰值 PN 为 -114.63 dBc/Hz,最佳 FOM 和 FOM T 的最大和最小对应值分别为 -173.9 至 -181.84 dB 和 -181.07 至 -189 dB。VCO 核心在 1 V 电源下消耗 10.2 mA 电流,占用面积为 0.146 × 0.205 mm 2 。
频率梳子具有10-20 GHz的模式间距对于越来越重要的应用至关重要,例如天文光谱仪校准,高速双重击向光谱和低噪声微波生成。虽然电磁调节器和微孔子可以以这种重复速率提供窄带梳子来源,但剩余的挑战是产生具有足够峰值功率的脉冲来启动非线性超脑抗脑电图的一种手段,该脉冲跨越了数百个Terahertz(THZ)(THZ)。在这里,我们使用现成的偏振化放大和非线性纤维组件为此问题提供了简单,坚固且通用的解决方案。使用1550 nm的谐振电频率梳子证明了这种非线性时间压缩和超脑部生成的光纤方法。我们以20 GHz的重复速率显示了如何轻易实现短于60 fs的脉冲。可以将相同的技术应用于10 GHz的皮秒脉冲,以表现出9倍的时间压缩,并实现50 fs脉冲,峰值功率为5.5 kW。这些压缩的脉冲通过多段分散量的异常 - 非线性纤维或tantala波导,可以在传播后跨越超过600 nm的平坦超脑生成。相同的10 GHz源可以很容易地获得八度跨度的光谱,以在分散工程二氮化硅波导中自我引用。这种简单的全纤维方法用于非线性光谱扩展填补了将任何窄带10–20 GHz频率梳子转换为宽带光谱的关键空白,用于从高脉冲率中受益并需要访问单个梳子模式的广泛应用。
简介:下一代无线网络将依靠更小的蜂窝和更大的带宽来增加容量。通过保持无线电头硬件简单,光纤无线电技术可以实现这种密集的基站网络。利用硅光子技术实现基站硬件的小型化,可以降低尺寸和成本。对于微波光子应用,氮化硅 (SiN) 平台提供损耗极低的波导和一些最好的集成滤波器。然而,随着转向更高的载波频率,在毫米波和太赫兹频段,对光电二极管带宽的要求也会增加。当前的 SiN 平台缺少这种光电二极管,因此阻碍了高频微波光子应用。[1] 我们展示了一种 300 GHz 的通信链路,该链路由 SiN 上的异构集成单行载波 (UTC) 光电二极管作为发射器中的光电换能器实现。
摘要 使用紧凑而坚固的宽带微电子 THz 波谱仪在 220-330 GHz 频率范围内进行旋转吸收光谱法,演示了对卤代烃的气体传感。在工业环境中,对卤代烃进行监测是必要的,因为这些化学物质具有毒性、挥发性和反应性,对人类健康和环境构成威胁。在 297 K 和 0.25 至 16 Torr 压力下表征了纯氯甲烷、二氯甲烷、氯仿、碘甲烷和二溴甲烷的吸收光谱。光谱显示了目标卤代烃在 220-330 GHz 频率范围内独特的旋转指纹,并展示了它们在气体传感应用中选择性定量检测的潜力,纯气体的最小检测量为 10 12 –10 13 分子/cm 3 量级,稀释气体的最小检测量为 10-100 ppm 量级,1 个大气压,1 米光程。该研究进一步证明了全电子微型太赫兹波气体传感器的潜力。
摘要 — 介绍了一种用于 300 GHz 左右高速通信的宽带三级伪差分 SiGe 互连双极晶体管 (HBT) 功率放大器 (PA)。该放大器采用实验性的 130 nm SiGe BiCMOS 技术制造,ft / f max 为 470/650 GHz。建议使用非对称耦合线变压器在所有放大器接口处进行器件电抗补偿,以促进宽带阻抗变换。该放大器的最大小信号功率增益为 23.0 dB,P sat /OP 1 dB 分别高达 9.7/6.7 dBm。它在小信号操作中显示 63 GHz(239-302 GHz)的 3-dB 带宽,在饱和时显示 94 GHz(223-317 GHz)的 3-dB 带宽。该放大器在 3 V 电源电压下消耗大约 360 mW,在 260 GHz 时产生 1.95% 的峰值功率附加效率 (PAE)。
TA Zimmerman (S'62-S'64-M'71) 获得了辛辛那提大学 (俄亥俄州辛辛那提市) 的电子工程学士学位,以及普渡大学 (印第安纳州拉斐特市) 的硕士和博士学位。他目前是加利福尼亚州雷东多海滩 TRW 系统集团微电子实验室电荷转移 LSI 产品部的部门经理。他负责所有 MOS 和 CCD 电路的设计和应用。此外,自 1972 年 7 月以来,他一直指导 TRW 的 CCD 应用项目。在担任现职之前,他从事微电子传感器技术工作。加入 TRW 之前,他曾在普渡大学负责发起和开发一个涉及地球物理涡旋“现场”测量的研究项目。他还曾担任普渡大学的研究生导师,目前是加利福尼亚大学洛杉矶分校的副教授。他是30多篇技术论文的作者,拥有一项国内专利和一项国外专利以及多项专利申请。
摘要:本文提出了一种77 GHz串馈贴片阵列天线的设计方法。该研究基于传统遗传算法,探索由相同微带贴片组成的不同阵列拓扑来优化设计。主要的优化目标是降低最大旁瓣电平(SLL)。采用该方法对一种用于汽车雷达的77 GHz串馈贴片阵列天线进行了仿真、加工和测量。天线长度限制不大于3 cm,阵列仅有单个紧凑串联,辐射贴片宽度约为1.54 mm。在用于优化的遗传算法中,将最大旁瓣电平设置为小于或等于-14 dB。测量结果表明,在77 GHz处,所提出的天线的增益约为15.6 dBi,E平面半功率波束宽度约为±3.8 ◦,最大旁瓣电平约为-14.8 dB,H平面半功率波束宽度约为±30 ◦。电磁仿真与测量结果表明,采用所提方法设计的77 GHz天线比本文相同长度的传统天线旁瓣抑制效果提高4 dB以上。
摘要 本文研究了一种具有可变增益控制的 60 GHz 低功耗宽带低噪声放大器 (LNA)。为了证明这一概念,该电路采用 22 nm 全耗尽绝缘体上硅 (FD-SOI) CMOS 技术实现。它通过增益峰值(增益分配)技术支持 60 GHz 的宽带操作。通过调整放大器的一些关键匹配网络,每级的峰值增益被分配到不同的频率,从而产生整体宽带频率响应。该电路由三个级联共源共栅放大器级组成。匹配网络针对带宽和噪声系数进行了优化。晶体管背栅用于 LNA 设计,以将电路切换到低功耗待机模式。这避免了基于前栅的切换在电压击穿和电路稳定性方面的问题。此外,通过背栅实现了在如此高频率下同时实现可变增益控制。与基于前栅的相比,基于背栅的可变增益控制可以实现增益的连续微调,同时对控制电压的精度或分辨率要求较低。在测量中,增益通过背栅成功从 20 dB 调低至 − 25 dB。在 1 V 标称电源的 8.1 mW 直流功率下,LNA 提供 20 dB 的峰值增益、18.5 GHz 的带宽和 3.3 dB 的最小噪声系数。当偏置在 0.4 V 的降低直流电源下时,所给出的电路仅消耗 2.5 mW 的直流功率,并且仍然提供 10 dB 的功率增益和约 4.5 dB 的最小噪声系数。通过切换到待机模式,LNA 在标称电源下消耗 850 µ W 的直流功率,在降低电源下消耗 240 µ W 的直流功率。与之前报告的设计相比,LNA 表现出色,具有最低的噪声系数以及具有竞争力的增益、带宽和直流功率。据作者所知,这是第一款通过单独的背栅偏置具有联合可变增益控制和切换功能的 60 GHz LNA。
鉴于 CEPT 国家对相关频率范围的使用和要求,与 CEPT 国家军事当局进行联络也是必要的。尽管没有一个代表所有 CEPT 成员国的单一军事代表机构,但北大西洋公约组织 (NATO) 有一个联合民用/军用频率协议(NATO 联合民用/军用频率协议 (NJFA),公开披露摘录,2017 年 2 月 14 日),北约国家将其视为无线电频率规划和政策制定的基础贡献。CEPT 还建立了一个论坛,让所有 CEPT 国家的民用和军用频率管理人员可以会面。这个论坛,即民用军事会议,考虑了协调军事使用频谱的要求,以满足北约和非北约 CEPT 国家的需求,并邀请 WGFM 考虑采取后续行动。军事要求因活动和国家而异。在一些国家,国家要求可能高于 ECA 表中所示的要求或北约和北约成员国为军事用途特别协调的要求。