摘要 — 本摘要介绍了一种基于低温逆变器的两倍电流再利用和 40 纳米 CMOS 双噪声消除低噪声放大器 (LNA)。所提出的 LNA 由三级组成:基于电流再利用逆变器的输入级,具有分流电阻反馈和自体偏置 (SBB),可在低温下缓解 V th 增加并提高 r out。第二级是双辅助噪声消除级,带有额外的电流再利用并联晶体管,可增强跨导并抑制主放大器和辅助放大器的噪声。最后一级是共源后置放大器,可进一步增强增益。在 4 K 下,LNA 实现了 31 dB 的测量峰值增益 (S 21),具有从 10 MHz 到 2.6 GHz 的大 3-dB 带宽,在 0.6 GHz 下,功耗为 8.6 mW,最小 NF 为 0.1 dB(对应于 6.8 K 的噪声温度 TN)。该电路占用的核心面积为 0.117 mm 2 。
本文档总结了 V2X 调查并讨论了更新后的应用图(《V2X 调查概要和更新后的 V2X 应用图》,第 2-12 页),提供了完整的 ITS America V2X 行业调查分析(《ITS America V2X 行业未来调查分析》,附录 A,第 13-32 页),包括 5GAA 第一天部署指南摘要(《5GAA 消息集指南》,附录 B,第 33-34 页),概述了 FCC 迄今为止在 5.9 GHz 频段采取的行动(《FCC 在 5.9 GHz 频段采取的行动》,附录 C,第 35-39 页),并列出了当前的 C-V2X 豁免接收者(《C-V2X 豁免方》,附录 D,第 40-42 页)。随着第一天部署根据基础设施所有者运营商 (IOO) 和 OEM 进一步完善,以及第二天消息和应用程序被识别,本文档将进行补充。
长期进化(LTE)射频电磁场(RF-EMF)广泛用于通信技术。因此,RF-EMF对生物系统的影响是一个主要的公众关注,其生理影响仍然存在争议。在我们先前的研究中,我们表明,各种人类细胞类型的连续暴露于1.7 GHz LTE RF-EMF以2 W/kg的特定吸收率(SAR)持续72小时可以诱导细胞鼻塞。为了了解LTE RF-EMF的精确细胞效应,我们详细阐述了先前研究中使用的1.7 GHz RF-EMF细胞暴露系统,它通过替换RF信号发生器并开发了基于软件的反馈系统来提高暴露功率稳定性。1.7 GHz LTE RF-EMF发电机的这种完善促进了RF-EMF暴露的自动调节,即使在72 h-h-fipsues期间,也将目标功率水平保持在3%的范围内和恒定温度。通过改进的实验设置,我们检查了在人脂肪组织衍生的干细胞(ASC),HUH7,HELA和大鼠B103细胞中连续暴露于1.7 GHz LTE RF- EMF的效果。令人惊讶的是,与未暴露的控制相比,所有细胞类型的增殖都没有显着变化。此外,在1.7 GHz LTE RF-EMF暴露的细胞中均未观察到DNA损伤和细胞周期扰动。但是,当关闭热控制系统并且在连续暴露于8 W/kg LTE RF-EMF的SAR期间,未控制RF-EMF诱导的随后温度升高时,细胞增殖在最大值时增加了35.2%。这些观察结果强烈表明,归因于1.7 GHz LTE RF-EMF暴露的细胞效应主要是由于诱导的热变化而不是RF-EMF的暴露本身。
SpaceX 是一家成立于 2002 年的私营公司,旨在革新太空技术,最终目标是让人类成为多星球物种。SpaceX 已经实现了一系列历史性里程碑,并自豪地成为历史上第一家将宇航员送入轨道并安全返回地球的私营公司。迄今为止,SpaceX 已成功发射了 330 多个太空任务。SpaceX 正在利用其在太空系统制造、设计和运营方面积累的专业知识来创建 Starlink,这是一个卫星星座,旨在为挪威和全球任何地方提供高速、低延迟的宽带服务。迄今为止,SpaceX 已经发射了 6,000 多颗非地球静止轨道 (NGSO) Starlink 卫星,并部署了采用先进通信和空间运营技术的广泛地面基础设施。Starlink 系统旨在通过优化其与其他授权卫星和地面用户灵活共享频谱的能力来高效利用无线电频谱资源,包括通过使用先进的波束成形和数字处理技术。 SpaceX 目前使用 Ku 波段连接客户用户终端,用于上行和下行频率,网关链路使用 Ka 波段和 E 波段,但随着需求的增长,展望其他波段以满足不断变化的消费者需求将非常重要。SpaceX 于 2022 年 8 月在挪威开始 Starlink 运营,目前在 Åfjord 运营网关地面站。SpaceX 希望扩大该站点,并正在研究在该国建设更多基础设施的可能性,以便为挪威客户提供更好的服务。
RFM99-S2是一款高性价比的超低功耗、高灵敏度、远距离通信的射频收发模块。该模块工作在2400~2483,5MHz频率范围内,提供高效的蓝牙兼容调制方式,可大大增加通信距离,并可兼容蓝牙协议。
Matthias,DD1US,2024 年 4 月 4 日,修订版 1.0 前段时间,我买了一个有缺陷的 13cm 功率放大器,最初由 Phillip Prinz DL2AM 出售。PCB 上有一个标记 MT2,3Z1W,似乎是型号。两级放大器安装在镀锡机柜中。PCB 看起来像 RT-Duroid,它正确地连接到固体金属散热器上。电源电压范围为 12-15V,放大器具有定向耦合器和二极管检测器,用于测量正向输出功率。放大器坏了,在检查过程中我发现第一级的驱动放大器有缺陷。我用 Mini Circuits VNA25+ 替换了它。第二级使用的是三菱 MGF0904 GaAsFET。更换有缺陷的部件后,PA 现在又正常工作了。以下是该设备的一些图片:
1.9鉴于此,为了在英国进行进一步扩展,我们正在就这些频率的案例基础上的情况下直接授权卫星网关的提案,以这些频率为基础,这些频率目前尚不适用于现有的NGSO Gateway和PES载体下方的卫星网关。 此直接授权将受到咨询流程的约束,以避免对现有光谱访问许可证的物质影响。 我们建议这种方法还适用于Arqiva持有的三个地理频谱访问许可,直到2026年8月31日,以及目前未分配的频谱块在北爱尔兰和伦敦地区,1925年2月28日 - 28.3045 GHz与29.2005 - 29.2005 - 29.3125 GHz配对。1.9鉴于此,为了在英国进行进一步扩展,我们正在就这些频率的案例基础上的情况下直接授权卫星网关的提案,以这些频率为基础,这些频率目前尚不适用于现有的NGSO Gateway和PES载体下方的卫星网关。此直接授权将受到咨询流程的约束,以避免对现有光谱访问许可证的物质影响。我们建议这种方法还适用于Arqiva持有的三个地理频谱访问许可,直到2026年8月31日,以及目前未分配的频谱块在北爱尔兰和伦敦地区,1925年2月28日 - 28.3045 GHz与29.2005 - 29.2005 - 29.3125 GHz配对。
在本文中,我们设计并模拟了28/38 GHz双波段多输入多输出(MIMO)贴片天线阵列,该贴片天线阵列在FR2频带(28 GHz和38 GHz)中运行。此天线阵列包括四个具有矩形“ L负两个插槽”形状的类似贴片天线。此外,它适用于5G电子组件,例如智能手机。我们使用高频结构模拟器(HFSS)软件来执行此天线的设计和仿真。此外,该提出的天线阵列提供了更好的性能,例如;大约28 GHz的带宽等于0.69 GHz,38 GHz等于0.86 GHz,等于5。9 dB在28 GHz时,在38 GHz时为9 dB,目录在28 GHz时为6.3 dB,在38 GHz时为9.4 dB,在28 GHz时为95.38%的效率为95.38%,效率为96.53%,为96.53%。
已审查了不同电磁屏蔽材料的设计和制造方法的最新技术。由于电信技术开发产生的电磁污染,该主题已成为主流研究领域。审查以吸收性材料为中心,并显示了如何通过几何,组成,形态和填充粒子含量来定制此类复合材料的吸收特性的一般概述。尽管解释了不同类型的材料,但文本主要集中在石墨烯和碳纳米管等碳材料上。通过这种方式,讨论了导电填充剂在不同聚合物矩阵中的重要性。此外,还提出了一项关于新的复杂体系结构(例如基于泡沫的材料)的广泛研究。最后,提到了碳填充剂与其他成分(例如金属纳米颗粒)的组合。在所有这些研究中,讨论了复合材料作为吸收性或反射电磁辐射的效率。
频率梳子具有10-20 GHz的模式间距对于越来越重要的应用至关重要,例如天文光谱仪校准,高速双重击向光谱和低噪声微波生成。虽然电磁调节器和微孔子可以以这种重复速率提供窄带梳子来源,但剩余的挑战是产生具有足够峰值功率的脉冲来启动非线性超脑抗脑电图的一种手段,该脉冲跨越了数百个Terahertz(THZ)(THZ)。在这里,我们使用现成的偏振化放大和非线性纤维组件为此问题提供了简单,坚固且通用的解决方案。使用1550 nm的谐振电频率梳子证明了这种非线性时间压缩和超脑部生成的光纤方法。我们以20 GHz的重复速率显示了如何轻易实现短于60 fs的脉冲。可以将相同的技术应用于10 GHz的皮秒脉冲,以表现出9倍的时间压缩,并实现50 fs脉冲,峰值功率为5.5 kW。这些压缩的脉冲通过多段分散量的异常 - 非线性纤维或tantala波导,可以在传播后跨越超过600 nm的平坦超脑生成。相同的10 GHz源可以很容易地获得八度跨度的光谱,以在分散工程二氮化硅波导中自我引用。这种简单的全纤维方法用于非线性光谱扩展填补了将任何窄带10–20 GHz频率梳子转换为宽带光谱的关键空白,用于从高脉冲率中受益并需要访问单个梳子模式的广泛应用。