摘要β2-肾上腺素能受体(β2-AR)是G蛋白偶联受体(GPCR),参与许多癌症的发展,其中包括HNSCC。在本竞赛中,β2-AR信号传导与通常被TK受体激活的不同途径(例如PI3K和MAPK)相互作用。因此,TK封锁是HNSCC患者中最采用的治疗策略之一。在我们的研究中,我们使用选择性抑制剂ICI118,551(ICI)研究了β2AR阻断在HNSCC细胞系中的影响,并与MAPK抑制剂U0126结合使用。我们发现ICI导致p38和NF-KB致癌途径的阻塞,也强烈影响ERK和PI3K途径。与U0126的合作构成对细胞活力和途径改变的协同作用。有趣的是,我们发现β2-AR阻滞会影响NRF2-KEAP1稳定性及其核易位,从而导致ROS急剧增加和氧化应激。我们的结果通过TCGA数据集分析确认,表明NFE2L2基因通常在HNSC中过表达,并且与较低的存活率相关。在我们的系统中,PI3K途径抑制作用最终导致促进生存自噬,这是癌细胞通常采用的一种机制,以较少对疗法的反应。在HNSC中通常上调的MTOR表达在患有疾病疾病的患者中降低。众所周知,MTOR具有强大的自噬抑制作用,因此其下调促进了促生寿命自噬,并具有相关的增加复发率。我们的发现的亮点在第一次的HNSCC细胞增殖和耐药性中的β2-AR和相关途径的关键作用是一种有价值的治疗分子靶标。
Apelin受体(APJR)属于A类G蛋白偶联受体(GPCR)组,该组与心脏发育,心血管稳态和心脏收缩密切相关[1,2]。APJR信号通路的激活可以减轻或治疗许多与心血管相关的疾病,例如心力衰竭和高血压(图1)。许多制药公司,例如Amgen,BMS和Sanofi,都试图开发有效的APJR激动剂配体;但是,到目前为止,还没有成功销售药物。要开发APJR的新激动剂,尤其是小分子药物,了解小分子结合模式的分子机制至关重要。To investigate the molecular mechanism of a small- molecule ligand, we chose a potent small-molecule agonist, (1S,2R)-N-(4-(2,6-dimethoxyphenyl)-5-(6- methylpyridin-2-yl)-4H-1,2,4-triazol-3-yl)-1-hydroxy- 1-(5-甲基吡啶蛋白-2-基)丙烷-2-磺酰胺(称为CMPD644),类似于开发用于治疗心力衰竭的临床阶段药物候选药物(美国专利WO2016187308A1,AMGER INC。)。经过几轮优化后,我们通过冷冻方法在复合物中获得了CMPD644结合的APJR结构,其下游异三聚体G A I G BG [3]。有趣的是,我们观察到来自一个Cryo-EM数据集的两种类型的APJR-GI耦合化学测定法。二聚体APJR和单体APJR采用2:1和1:1(受体:G蛋白)化学计量比(图2)。这提供了第一个直接的结构证据,表明配体结合和G蛋白偶联APJR信号复合物中同型和单体共存。了解小分子配体结合
DNA 结合转录因子 (TF) 是真核蛋白质组中最重要的蛋白质类别之一 1 。通过结合特定 DNA 位点并控制近距离基因的转录输出,TF 在几乎所有细胞基因组的调控中发挥着基础性作用 2 。TF 通过差异地调节共同的遗传密码来决定多细胞生物中单个细胞的身份和命运,并通过充当细胞信号传导网络中的终点来负责快速协调对内部和外部刺激的反应 3 , 4 。据估计,人类基因组中至少有 1,600 种 TF,其中约 19% 与疾病表型相关 1 。鉴于其对生物学的重要性,TF 是疾病的常见驱动因素并且代表着诱人的治疗靶点 3 , 5 , 6 。近二十年前,James Darnell 在抗癌治疗的背景下最好地概括了直接 TF 调节剂的巨大潜力 5 。他强调,鉴于 TF 在选择性基因调控中的基础作用,它们比 GPCR 或激酶等上游信号蛋白更有能力进行高度特异性的疾病调节。也就是说,一种假设的失调 TF 抑制剂可以通过仅抑制由该 TF 驱动的转录程序来限制毒性,同时提高疗效,而不会产生有时与抑制与疾病无关的多个信号网络相关的信号蛋白有关的附带损害 7,8 。由于单个 TF 通常只调节一组有限的基因靶点,这些靶点受其 DNA 结合功能控制
在原子细节中解决蛋白质 - 配体相互作用是了解小分子如何调节大分子功能的关键。尽管最近的低温电子显微镜(Cryo-EM)进行了分解,但可以对许多复杂的生物分子进行高质量的重建,但是结合的Lig-和S的分辨率通常相对较差。此外,将分子模型构建和完善分子模型的自动化方法主要集中在蛋白质上,并且可能不会针对小分子配体的各种特性进行优化。在这里,我们提出了一种将生成性人工智能(AI)与低温EM密度引导的模拟整合在一起,以将配体拟合到实验图中。使用三个输入:1)蛋白质氨基酸序列,2)配体规范,以及3)实验性的冷冻EM图,我们验证了我们在一组生物医学相关的蛋白质配体复合物上验证了我们的方法,包括激酶,GPCR和溶质转运蛋白,在AI培训数据中都不存在。在生成AI不足以预测实验姿势的情况下,将柔性拟合整合到分子动力学模拟中,相对于沉积的结构从40-71%到82-95%的分子模拟拟合的整合改善了配体模型对图。这项工作提供了一个直接的模板,用于集成生成的AI和密度引导的模拟,以在配体 - 蛋白质复合物的低温EM地图中自动化模型构建,并在新型调节剂和药物的表征和设计中使用潜在的应用。
糖尿病患者容易患糖尿病性肾脏疾病(DKD),可能导致心血管损伤,高血压和肥胖症,并降低生活质量。结果,患者的生活质量大大降低。然而,糖尿病肾病(DKD)的发病机理尚未完全阐明,目前的治疗仍然不足。因此,探索DKD的分子机制及其并发症至关重要。下一代序列(GSE217709)数据集从基因表达综合(GEO)数据库中获得。通过R软件挑选出差异表达的基因(DEG)。然后,通过人类整合蛋白质蛋白质相互作用参考(Hippie)数据库构建了GEGS的profiler数据库(pPI)的基因本体论(GO)和Reactome途径富集分析。模块分析是通过Cytoscape插件Pewcc进行的。随后,miRNET数据库和NetworkAnalyst数据库进行了miRNA-HUB基因调节网络和TF-HUB基因调节网络。最后,通过接收器操作特征(ROC)曲线分析对中心基因进行验证,以预测集线器基因的诊断有效性。总共确定了958摄氏度,包括479个加速和479个受调节基因。GO和DEG的途径富集变化主要富含生物调节,多细胞生物过程,GPCR和细胞外基质组织的信号传导。生物信息学分析是探索DKD及其并发症的分子机制和发病机理的有用工具。与DKD相关的十个集线器基因(HSPA8,HSPA8,HSPA5,HSPA5,SDCBP,HSP90B1,VCAM1,MYH9,MYH9,FLNA,MDFI和PML)及其并发症及其并发症。确定的枢纽基因可能参与DKD的发作和发展及其并发症,并作为治疗靶标。
背景:小檗碱是一种天然存在的生物碱,被广泛用于多种健康益处,包括体重管理和代谢紊乱。据报道,小檗碱的主要药理作用是通过激活 AMP 活化蛋白激酶,而其其他临床结果缺乏明确的作用机制。因此,本研究使用成熟的 Insilco 工具评估了小檗碱及其两种主要代谢物(小檗红碱和药根碱)在人体中的详细药理学。材料和方法:在 SwissTargetPrediction 服务器中确定了小檗碱及其代谢物的靶标,并使用 AutoDock vina 1.2.0 评估了它们的亲和力。使用 PrankWeb:配体结合位点预测工具评估了最高配体受体组合的结合位点。结果:激酶、酶和 A 家族 GPCR 被确定为小檗碱及其代谢物的三大靶标类别。观察到 ROCK2、PIK3CD、KCNMA1、CSF1R 和 KIT 是小檗碱及其代谢物的高亲和力靶点,亲和力值 <4 uM。小檗碱及其代谢物对所有 AMPK 和脂质/葡萄糖调节靶点(LDLR、DDP4 和 PCSK9)的亲和力均为 >10 uM。小檗碱及其代谢物对 ROCK2 的 IC50 值最小(<1 uM),而其其他高亲和力靶点(PIK3CD、KCNMA1、CSF1R 和 KIT)的 IC50 值 <5 uM。结论:多种多样的蛋白质靶点和观察到的新的亲和力靶点(ROCK2、PIK3CD、KCNMA1、CSF1R 和 KIT)为小檗碱及其代谢物在各种疾病条件下的潜在作用机制和治疗效果提供了有价值的见解,值得在合适的功效分析研究中进行验证。
癫痫发作仍然是药物发现和开发过程中人员流失的重要原因,导致竞争力下降、延误和成本增加。目前的检测方法依赖于旨在支持临床试验的体内研究中的观察结果,例如震颤或其他异常运动。这些迹象可能会被遗漏或误解;因此,药物引起的癫痫发作的明确确认需要进行后续脑电图研究。使用自动视频系统记录和分析动物运动的体内癫痫发作检测已经取得了进展。尽管如此,最好能够尽早预测癫痫发作风险,以便在发现早期消除责任,同时药物化学家可以选择制造潜在的新药。常规早期筛查可以减少因心脏不良事件而导致的人员流失;我们能否使用类似的方法减少因癫痫发作而导致的人员流失?具体来说,微电极阵列可用于检测干细胞衍生神经元中的潜在癫痫发作信号。此外,有明确证据表明神经元电压门控和配体门控离子通道、GPCR 和转运蛋白与癫痫发作有关。在应激或炎症状态下与周围神经胶质细胞的相互作用也会调节神经元的离子通道功能,这增加了癫痫发作预测的难度。现在正是评估开发与一组预测癫痫发作的离子通道检测相关的癫痫发作体外评估机会的好时机,目的是在设计阶段影响结构-活性关系并消除预测与促癫痫状态相关的化合物。
在1993年,O'Dowd等人。 首先鉴定了人类基因组的APJ受体(与血管紧张素受体AT1相关的假定受体蛋白)(O'Dowd等,1993)。 是G蛋白偶联受体(GPCR),具有七个α-跨膜螺旋,也称为孤儿G蛋白偶联受体(OGPCR),因为尚未鉴定任何内源性配体。 APJ和AT1受体的基因序列具有约35%的同源性,但不与血管紧张素II结合(Read等,2019)。在1998年,Tatemoto等。 使用反向药理方法从牛胃分泌物中提取并纯化了一种新的神经心脏血管活性肽Apelin,并将其确定为APJ受体的内源配体(Tatemoto等,1998)。 apelin及其受体分布在人体的各种组织和器官中,并参与了心血管活性,血管生成和脂肪胰岛轴的调节,并在维持人体流动稳态方面起着至关重要的作用(Galanth等人,2012; Chapman等,2014年)。 在2013年,Chng等人第一次识别了Apj,Elabela(Ela)的另一个新型内源配体,在Zebra Fim sh胚胎中(Chng等,2013);另外,Pauli等。 报告了相同的肽结构并将其命名为幼儿(Pauli等,2015)。 ela在人类胚胎,心脏和肾脏组织中高度表达,及其在促进胚胎发育,调节血液循环和维持流体稳态方面的作用正在逐渐被发现(Deng等,2015; Freyer等,2017; Sato等,2017; Sato等,2017)。在1993年,O'Dowd等人。首先鉴定了人类基因组的APJ受体(与血管紧张素受体AT1相关的假定受体蛋白)(O'Dowd等,1993)。是G蛋白偶联受体(GPCR),具有七个α-跨膜螺旋,也称为孤儿G蛋白偶联受体(OGPCR),因为尚未鉴定任何内源性配体。APJ和AT1受体的基因序列具有约35%的同源性,但不与血管紧张素II结合(Read等,2019)。在1998年,Tatemoto等。使用反向药理方法从牛胃分泌物中提取并纯化了一种新的神经心脏血管活性肽Apelin,并将其确定为APJ受体的内源配体(Tatemoto等,1998)。apelin及其受体分布在人体的各种组织和器官中,并参与了心血管活性,血管生成和脂肪胰岛轴的调节,并在维持人体流动稳态方面起着至关重要的作用(Galanth等人,2012; Chapman等,2014年)。在2013年,Chng等人第一次识别了Apj,Elabela(Ela)的另一个新型内源配体,在Zebra Fim sh胚胎中(Chng等,2013);另外,Pauli等。报告了相同的肽结构并将其命名为幼儿(Pauli等,2015)。ela在人类胚胎,心脏和肾脏组织中高度表达,及其在促进胚胎发育,调节血液循环和维持流体稳态方面的作用正在逐渐被发现(Deng等,2015; Freyer等,2017; Sato等,2017; Sato等,2017)。当前的一项研究表明,ELA与肾脏的病理生理功能密切相关,并在各种肾脏疾病中发挥保护作用(Chen等,2020a)。本文回顾了ELA在肾脏疾病发展中的结构,生理功能和作用。
肠道微生物群 (GM) 由胃肠道中的数万亿微生物组成,是肥胖和相关代谢紊乱(如 2 型糖尿病 (T2D)、代谢综合征 (MS) 和心血管疾病)发展的关键因素。这篇小型综述深入探讨了 GM 在这些疾病中的复杂作用和机制,为针对微生物群的潜在治疗策略提供了见解。该综述阐明了人类 GM 的多样性和发展,强调了其在宿主生理学中的关键功能,包括营养吸收、免疫调节和能量代谢。研究表明,GM 失调与能量提取增加、代谢途径改变和炎症有关,导致肥胖、MS 和 T2D。探讨了饮食习惯和 GM 组成之间的相互作用,强调了饮食对微生物多样性和代谢功能的影响。此外,该综述还讨论了常用药物和粪便微生物群移植等治疗干预措施对 GM 组成的影响。迄今为止的证据支持进一步研究以确定 GM 调节在减轻肥胖和代谢疾病方面的治疗潜力,强调临床试验以建立有效和可持续的治疗方案的必要性。关键词:肠道微生物群、肠道微生物组、肥胖、代谢综合征、 2 型糖尿病缩写:A. muciniphila、Akkermansia muciniphila;BCAA、支链氨基酸;CAG、同丰度组;F/B、厚壁菌门/拟杆菌门;FMT、粪便微生物群移植;GDM、妊娠期糖尿病;GIT、胃肠道;GLP-1、胰高血糖素样肽 1;GM、肠道微生物群;GPCR、G 蛋白偶联受体;IL、白细胞介素;IR、胰岛素抵抗;LPL、脂蛋白脂肪酶;LPS、脂多糖;MS、代谢综合征;P. copri、普氏菌; PYY,肽YY;SCF,短链脂肪酸;TLR,Toll样受体;T2D,2 型糖尿病。
关于演讲者:克里斯蒂·泰勒(Christy Taylor)是密苏里州圣路易斯拜耳作物科学的计算蛋白设计负责人。Christy以B.S.的Missouri科学技术大学毕业。 化学学位。 Christy获得了NSF奖学金奖学金和Anna Fuller Cancer Research研究奖学金奖学金。研究。 克里斯蒂获得博士学位。在麻省理工学院的生物学博士学位与艾米·基廷博士(Amy Keating)博士一起,她的博士学位论文名为“小蛋白质中的重新设计特异性”。 克里斯蒂(Christy)与加兰德·马歇尔(Garland Marshall)博士在圣路易斯华盛顿大学(Washington University)进行了博士后学习。 在马歇尔博士的实验室中,克里斯蒂专注于GPCR周围的计算化学项目。 Christy被授予NIH国家研究服务奖博士后奖学金,W.M。 凯克分子医学博士后奖学金和NIH国家研究服务奖博士后奖学金奖学金。 希望了解有关计算生物学的更多信息,克里斯蒂(Christy)在华盛顿大学医学院的基因组学院担任了一名员工科学家职位,在那里她对线虫进行了比较的基因组学。 克里斯蒂(Christy)于2012年加入孟山都(Monsanto),在化学部门进行了生物信息学和小分子研究。 在2018年,克里斯蒂(Christy)过渡到生物技术组织的计算蛋白设计团队。 Christy的团队在主要行作物中设计蛋白质,以用于昆虫控制和除草剂耐受性,并设计合成的表达元素并优化蛋白质表达。 她最近也被提升为拜耳高级科学研究员。Christy以B.S.的Missouri科学技术大学毕业。化学学位。 Christy获得了NSF奖学金奖学金和Anna Fuller Cancer Research研究奖学金奖学金。研究。 克里斯蒂获得博士学位。在麻省理工学院的生物学博士学位与艾米·基廷博士(Amy Keating)博士一起,她的博士学位论文名为“小蛋白质中的重新设计特异性”。 克里斯蒂(Christy)与加兰德·马歇尔(Garland Marshall)博士在圣路易斯华盛顿大学(Washington University)进行了博士后学习。 在马歇尔博士的实验室中,克里斯蒂专注于GPCR周围的计算化学项目。 Christy被授予NIH国家研究服务奖博士后奖学金,W.M。 凯克分子医学博士后奖学金和NIH国家研究服务奖博士后奖学金奖学金。 希望了解有关计算生物学的更多信息,克里斯蒂(Christy)在华盛顿大学医学院的基因组学院担任了一名员工科学家职位,在那里她对线虫进行了比较的基因组学。 克里斯蒂(Christy)于2012年加入孟山都(Monsanto),在化学部门进行了生物信息学和小分子研究。 在2018年,克里斯蒂(Christy)过渡到生物技术组织的计算蛋白设计团队。 Christy的团队在主要行作物中设计蛋白质,以用于昆虫控制和除草剂耐受性,并设计合成的表达元素并优化蛋白质表达。 她最近也被提升为拜耳高级科学研究员。化学学位。Christy获得了NSF奖学金奖学金和Anna Fuller Cancer Research研究奖学金奖学金。研究。克里斯蒂获得博士学位。在麻省理工学院的生物学博士学位与艾米·基廷博士(Amy Keating)博士一起,她的博士学位论文名为“小蛋白质中的重新设计特异性”。克里斯蒂(Christy)与加兰德·马歇尔(Garland Marshall)博士在圣路易斯华盛顿大学(Washington University)进行了博士后学习。在马歇尔博士的实验室中,克里斯蒂专注于GPCR周围的计算化学项目。Christy被授予NIH国家研究服务奖博士后奖学金,W.M。 凯克分子医学博士后奖学金和NIH国家研究服务奖博士后奖学金奖学金。 希望了解有关计算生物学的更多信息,克里斯蒂(Christy)在华盛顿大学医学院的基因组学院担任了一名员工科学家职位,在那里她对线虫进行了比较的基因组学。 克里斯蒂(Christy)于2012年加入孟山都(Monsanto),在化学部门进行了生物信息学和小分子研究。 在2018年,克里斯蒂(Christy)过渡到生物技术组织的计算蛋白设计团队。 Christy的团队在主要行作物中设计蛋白质,以用于昆虫控制和除草剂耐受性,并设计合成的表达元素并优化蛋白质表达。 她最近也被提升为拜耳高级科学研究员。Christy被授予NIH国家研究服务奖博士后奖学金,W.M。凯克分子医学博士后奖学金和NIH国家研究服务奖博士后奖学金奖学金。希望了解有关计算生物学的更多信息,克里斯蒂(Christy)在华盛顿大学医学院的基因组学院担任了一名员工科学家职位,在那里她对线虫进行了比较的基因组学。克里斯蒂(Christy)于2012年加入孟山都(Monsanto),在化学部门进行了生物信息学和小分子研究。在2018年,克里斯蒂(Christy)过渡到生物技术组织的计算蛋白设计团队。Christy的团队在主要行作物中设计蛋白质,以用于昆虫控制和除草剂耐受性,并设计合成的表达元素并优化蛋白质表达。她最近也被提升为拜耳高级科学研究员。克里斯蒂(Christy)拥有19个出版物和6份专利,并拥有生物信息学,计算化学,蛋白质设计,农业化学和昆虫控制的领域。在孟山都和拜耳,她获得了多个奖项,包括拜耳埃利普斯奖,拜耳生活科学合作竞赛冠军,拜耳影响力奖,孟山都冰(Inspire,Inspire,沟通,执行)奖和2023名杰出女性数据科学奖。