根据 1991 年《增值税法》,汽油、柴油和照明石蜡(煤油)免征南非大多数产品销售通常征收的增值税(能源产品:自 2018 年 4 月 1 日起为 15%;之前为 14%)。自 2005/2006 财年起,该指标被视为南非预算中的一项税收支出,该指标“通过估算销售价值并对最终消费者使用的估计量做出假设而计算得出”(OECD,2023b)。根据 OECD(2023),自 2006/2007 财年起,南非 20% 的汽油销售和 90% 的柴油销售用于商业目的;因此,这些购买免征增值税(OECD,2023b)。
图1通过计算两种代表性的2024年轻型运动多功能车的生命周期温室气体排放,显示了这种比较:一种是汽油供电的内燃机(ICE)车辆,另一个是EV。此比较着眼于每英里产生的排放(G CO 2 E/英里)。每辆车都使用代表性的燃料:冰的E10汽油和美国电动汽车的平均电网产生混合物1。对于冰,使用燃料(即在使用过程中汽车中的汽油燃烧)是GHG排放的最大贡献者,而燃料产量(即发电)是电动汽车的最大贡献者。总体而言,研发问候表明,2024年EV的温室气体排放量要比可比的冰车少52%。
日本内阁府在2014财年至2018财年的5年期间,在跨部委战略创新促进计划 (SIP) 中组织了一项重大项目“创新燃烧技术”。演讲介绍了汽油燃烧团队与28所大学合作对汽油发动机超稀薄燃烧概念的研究和开发。为了使汽油SI发动机的热效率达到50%,稀薄燃烧操作是通过低温燃烧减少热损失来提高热效率的有效技术之一。单缸SIP原型发动机采用过量空气比超过2.0的超稀薄混合气,以将燃烧温度降至2,000K以下,并减少热损失和NOx排放。然而,由于层流火焰速度降低导致燃烧持续时间延长,以及循环间燃烧波动和/或熄火增加,成为实现超稀薄燃烧发动机的障碍。因此,原型发动机设计为产生25m/s的高强度滚流,并利用滚流塌陷产生的湍流加速燃烧的效果。该发动机的火花点火系统比传统发动机的放电持续时间长10倍,放电能量更高,实现了稳定的循环点火和燃烧。
能源选择:马力是运输的早期标准。随着电力的出现,由电池驱动的电动马车出现在城市环境中,例如纽约 3 。与之前的马类似,电池也会耗尽,需要重新充电,因此出现了电池更换站。包括戴姆勒在内的发明家引入了内燃机 (ICE) 技术,包括火花点火(汽油)和压缩点火(柴油)。随着这些技术的成熟,它们迅速取代了电池供电,而早期电池组重量大、能量密度低,不利于电池供电。汽油和柴油加油速度快,能量密度高,新技术之所以盛行,是因为它使用户能够走得更远,上路更快,从而提高工作效率。
机动车汽油运输:经济协调委员会要求 Ogra 修改 MFM 和 KMK 关税 伊斯兰堡:官方消息人士告诉《商业记录报》,内阁经济协调委员会 (ECC) 已指示石油和天然气监管局 (Ogra) 修改马哈茂德科特-费萨拉巴德-马奇克 (MFM) 和卡拉奇马哈茂德科特 (KMK) 的机动车汽油运输关税。消息人士透露,巴基斯坦阿拉伯炼油有限公司 (PARCO) 成立于 1974 年,是巴基斯坦政府和阿布扎比酋长国 60:40 的合资企业。随着时间的推移,该公司通过其主要开发/基础设施项目不断发展壮大,其中包括一座 120,000 BPD 炼油厂、一个 2,000 公里的跨国管道网络、与法国道达尔合作的石油营销公司、巴基斯坦最大的液化石油气营销公司以及该国庞大的石油储存网络。
不同生态系统中有毒重金属的普遍存在提出了环境挑战,需要及时解决以维护人类健康和生态平衡。开发用于保护废水以保护水居民和人类生命的方法是一种公开义务。重金属离子水污染是最严重的环境问题之一。这是不受限制的,不受管制的工业废水以及农业和灌溉排水方案,这些方案将污水直接倒入水体中。这种不负责任的废物处理方法导致了超过建议安全限制的水污染物的浓度。例如,钢铁部门释放铅离子。铅也从酸电池,含铅汽油的燃烧,四乙基铅作为汽油中的抗旋转剂的非法使用中释放到环境中,
氢气具有高热值(1 公斤氢气的能量大约相当于 2.8 公斤汽油的能量),但由于它是一种轻气体,在自然形态下占有很大的体积,因此它的单位体积能量密度比其他燃料低得多(见图 4 中的 LH 2 和 CH 2)。这意味着,根据应用情况,它不一定是最节能的选择 21 。尽管氢燃料电池驱动的电动机的效率是汽油内燃机的两到三倍 22 ,但考虑到生产氢气所需的上游转换(例如效率约为 60% 的电解过程)或与电动汽车相比(电动汽车的电池效率约为 90%),其效率并不是决定性因素。
自 2017 年以来,日本政府 (GOJ) 的生物燃料标准已包括年度生物燃料目标产量,即事实上的强制要求,即 5 亿升原油当量 (LOE)1 或约 8.24 亿升生物乙醇。日本炼油厂主要通过进口源自生物乙醇的生物乙基叔丁基醚 (ETBE) 以及从进口生物乙醇中生产的少量国产生物乙基叔丁基醚来实现这一目标。2023 年 3 月 31 日,经济产业省 (METI) 下属的自然资源和能源局 (ANRE) 发布了日本新的生物燃料标准,称为《复杂法案》下的通知 3.0,该标准从日本财政年度(4 月至 3 月)2024 财年到 2028 财年生效。ANRE 一直保持 5 亿 LOE(即 8.24 亿升生物乙醇)的年度目标产量。此外,ANRE 将巴西甘蔗基乙醇的默认温室气体 (GHG) 排放量提高至 28.59 g-CO 2 e/MJ,将美国玉米基乙醇的默认温室气体 (GHG) 排放量提高至 36.86 g-CO 2 e/MJ。ANRE 还将运输生物乙醇的温室气体减排目标维持在目前的 55% 水平。不过,ANRE 目前正在审查汽油的温室气体排放值,当 ANRE 发布新值(可能在 2025 年)时,温室气体减排目标将变为 60%。FAS/Japan 估计,到 2023 年,日本以生物-ETBE 形式用于公路燃料的生物乙醇消费量将达到 8.11 亿升,汽油的乙醇混合率为 1.8%。预计日本炼油厂将继续按目标量供应含 ETBE 的生物乙醇;不过,汽油消费量预计将略有下降。因此,FAS/Tokyo 预测日本的乙醇混合率将在 2024 年小幅上升至 1.9%。2024 年 11 月 11 日,METI 宣布计划在不久的将来增加公路车辆的生物乙醇消费量。日本计划在 2030 财年之前商业化推出 E10 汽油。这种 E10 汽油可能包括直接乙醇混合,也可能继续加入 ETBE。此外,为了促进所述的 2040 财年商业化推出 E20 汽油,日本政府计划为 E20 制定新的汽油标准和车辆认证系统。从长远来看,采用可持续航空燃料 (SAF) 是日本政府增加交通运输部门生物燃料利用率计划的关键组成部分。日本国土交通省 (MLIT) 的目标是到 2030 年用 SAF 替代 10% 的传统航空燃料。为了实现这一目标,日本政府计划刺激纯 SAF 2 的国内生产,可能使用进口原料。虽然日本政府没有具体规定这样的要求,预计日本航空公司将寻求使用国际民航组织 (ICAO) 定义的符合国际航空碳抵消和减排计划 (CORSIA) 的燃料。为了消除私营部门的运营不确定性,经济产业省目前正在制定一项新的 SAF 标准,与《综合法案》下的现行生物燃料标准不同。
•煤(无烟煤)228.6•煤(沥青)205.7•煤(木质石)215.4•煤(亚bibitumigus)214.3•柴油燃料和加热油161.3•汽油(无乙醇)157.2•丙烷157.2•丙烷139.0